KANTI
BADEN

Kantonsschule Baden

www.kanti-baden.ch

Randomness In Videogames / Zufall In

Videospielen

Documentation

Rafael Teixeira da Silva, Vineet Nair, Nino Siegenthaler

Matura Project

Primary supervisor: Michael Schneider

Second assessor: Christophe Bersier

Submission date: 11.11.2025

www.kanti-baden.ch

Extended version 2024 / Kantonsschule Baden

Contents Contents
Contents

1 Introduction 4

2 Literature Review 5

2.1 Randomnessin Videogames 5

22 Terminology e 6

221 Whatareroguelikes? 8

2.2.2 Procedural Generation in Rogueikes 8

2.3 Purpose of Randomnessin Games 9

2.3.1 Types of Randomness: Input vs. Output 10

2.3.2 Strategic Impact and the Information Horizon 10

2.3.3 Psychological and Behavioral Effects 11

2.3.4 Ethical and Design Considerations: Loot Boxes 12

2.3.5 Random Stat-Based Upgrades. 13

3 Hypothesis Formulated from Literature Review 15

31 QuickSummary 16

4 The Game 16

41 Coregameplayloop. 16

42 CoreMechanics L o o 16

421 Player Abilities L o L o 16

422 Progressionand Upgrades 17

4.3 Procedural Level Generation in Three Dimensions 18

44 Enemy types and their behaviors 19

45 Interactions, Balance and Pacing 20

5 Implementation 20

5.1 ProjectOrganisation 20

5.2 LiteratureReview oo 000000000 20

5.3 Pre-Input for Modelling: Blender 21

53.1 Viewport Navigation and Transforms 21

5.3.2 Edit Mode and Selection Fundamentals 22

53.3 FastModeling Toolkit 23

53.4 Productive Use of Modifiers 25

5.3.5 Materials and Viewport Display 26

53.6 Rigging Primer: Armatures and Weight Painting 26

5.3.7 Keyframe Animation, With or Without Rigs 27

Contents Contents

54 ModelingwithBlender 27
541 Rampsat45°,35°and25° 28

542 Stairsat45° e 28

5.4.3 Pavilion-Like Platform 29

54.4 Vase-Like Structures 30

545 Characters e e 31

54.6 Texturing 32

547 ExporttoUnity 34

54.8 RoomsImplementation 34

55 Programming e 36
5,5.1 Random Generation 36

552 Changinggravity, 39

553 Upgrades 41

554 Enemies e e e e 43

55,5 Pity-system oo 44

6 Questionnaire for Playtesting 45
6.1 Methodandapproach, 45
6.2 Justification of the Questionnaire 47

6.3 How do we evaluate theresults? 47

7 Results of our Playtesting 48
7.1 Questionnaire Resultsof PartC 48

7.2 Questionnaire Resultsof PartD 49
7.2.1 Results of Detirministic Combat and Pity-System 49

8 Discussion and Interpretation 50
8.1 CoreQuestionnaire i i e e e 51
8.1.1 Fairness and Frustration 51

812 Replayability 52

813 Agency o o oo 53

814 Excitement. e 53

8.2 Implementation-SpecificChecks 54

9 Conclusion 55
91 Summaryoftheresults. 55
9.2 Positives e e e e e 55
93 Negatives o oo oo 56

Contents Contents

94 OQutlook forthe Future 57
941 WhyaGreek Theme? 58

1 INTRODUCTION

1 Introduction

Flipping a coin, pulling a slot machine lever, or rolling a die all share one fundamental
characteristic: their outcomes are random. Randomness is not only present in our
everyday lives but also in the digital world. In recent years, especially within video
games, randomness has become a common design tool used by developers to enhance
gameplay and, in some cases, to challenge players. Nevertheless, while randomness
can enrich the gaming experience, mastering it requires a clear understanding of its

underlying principles — the whys and hows of randomness.

To not only study the theoretical aspects but also apply them in practice, our group
decided to divide the project into two parts: a literature-based research phase and
a practical proof-of-concept (PoC) game. The first part focuses on understanding
the fundamental role of randomness in video games through a literature review
supported by case studies that demonstrate how theory has been successfully
applied in the past. To maintain a structured approach, we formulated several

guiding research questions:

* How is randomness used as a design tool in video games, and for what
purpose?
This question is crucial, as its answer supports our own game design and helps

avoid meaningless uses of randomness that could reduce player satisfaction.

* How does randomness affect player satisfaction?
Understanding this relationship allows us to design randomness that enhances

rather than frustrates the player experience.

* What are the differences between input and output randomness, and when
should each be applied?
For example, in a coin flip, the randomness lies in the output, whereas input
randomness affects player actions before the outcome is determined. We aim
to explore how both types influence perception and engagement.

* How can developers balance randomness to maintain fairness, enjoyment,
and strategic depth?
This final question addresses our goal of designing a game that is not only

enjoyable but also fair and thought-provoking.

2 LITERATURE REVIEW

The structure of this report is as follows. It begins with our literature review and

case studies on randomness in video games, presenting the research results and
conclusions. Next, we explain our product and its design, giving an objective
overview of the game itself. After this, we explain the practical parts about how
we implemented the idea into PoC; the methodology. Following that, we get into
the design and justification of our questionnaire for the playtesting of the PoC
game. This is then followed by two parts of our the PoC’s playtesting: presting
its results guided by our questionnaire and followed by a discussion, where we
try to interpret the result, trying to find any flaws and to detirmine our success.
The report concludes by summarizing the key points of our project, reflecting on
which research questions we successfully answered and applied, and discussing
the knowledge gained throughout the process. Finally, we provide an outlook

on future developments and unresolved challenges.

2 Literature Review

2.1 Randomness in Videogames

In modern game design, randomness has become an essential tool for shaping dy-
namic, engaging, and oftentimes unpredictable player experiences. From procedural
level generation in roguelike titles to probabilistic loot systems in online multiplayer
games, chance-based mechanics are present in nearly every genre. The relevance
of randomness in video games lies not only in enhancing variety and replayability,
but also in affecting fairness, difficulty balancing since the game should not just be
blatantly spamming some random elements out of context, moreover, psychological
reward mechanisms are also of high importance in games with randomness. As
gaming becomes an increasingly important field of study within computer science
and psychology, understanding the role and effects of randomness is both timely
and of high importance which also one of the reasons why we chose to focus on this

aspect.

This literature review explores the principle of randomness in video games in a broad
manner, looking into game design theory, cognitive science, and case studies from
both indie and AAA game development. The aim is to analyze how randomness

is applied in digital games, what purposes it serves, and how it influences player

2 LITERATURE REVIEW 2.2 Terminology

behavior, fairness, and strategic decision-making. Additionally special attention is
paid to the distinction between input randomness where random events shape the
scenario before the player’s decision and output randomness, where the randomness

affects the outcome of the player’s action.

Our research were initially guided by the following research questions to give the

research some sort of structure:

1. How is randomness used as a design tool in video games, and for what
purposes?

2. What is the difference between input and output randomness, and how do

these affect player perception and engagement?

3. How do developers manage or limit randomness to maintain fairness, enjoy-

ment, and strategic depth?

To address these questions, we reviewed a diverse set of academic sources, industry
reports, developer interviews, and case studies. Key examples include games like Into
the Breach, Slay the Spire], Shadow of Mordor (Monolith productions, 2014), and XCOM,
which demonstrate various implementations and consequences of randomness. This
review also includes a closer look at psychological phenomena (e.g. reward cycles,
illusion of control, etc.), regulatory discussions surrounding loot boxes, and strategies
for managing randomness to optimize game balance. The ultimate goal of this
study was to apply the gathered insights to the development of a proof-of-concept
video game that incorporates these findings into its core design.

2.2 Terminology

To avoid confusion throughout this literature review, we have compiled and explained
the key technical terms and concepts that are frequently used when discussing
randomness in video games. This section shows relevant terminology that come
in context of randomness in video games. Most of the terms are present in this

literature review.

Randomness: The occurrence of unpredictable outcomes in a system. In games,
randomness is often introduced through random number generators to produce

uncertainty in gameplay events, such as item drops or enemy behavior.

'Wikipedia: Slay the Spire, last accessed on: 05.11.2025.

2 LITERATURE REVIEW 2.2 Terminology

Input Randomness: A form of randomness where the random event occurs before
the player makes a decision. Examples include drawing a hand of cards
or procedurally generating a level before the player interacts with it. Input

randomness shapes the conditions under which a player must act.

Output Randomness: A form of randomness that takes place after the player has
made a decision. It determines whether the intended action succeeds or fails.
For example, shooting at an enemy in XCOM may or may not hit, even if the
player chose the target carefully.

Procedural Generation: The use of algorithms to automatically create content (such
as maps, levels, or characters) instead of manually designing each element.
This method is often used to ensure replayability and variety.

Information Horizon: A term from game design that refers to how far into the future
a player can predict the outcome of their actions based on available information.
Randomness reduces the information horizon by making future events less

predictable.

Loot Box: A virtual item that players can open to receive random rewards, often
used in monetization systems. Loot boxes may contain cosmetic items or

powerful equipment, and are sometimes compared to gambling mechanisms.

Dungeon Crawl: Dungeon crawl is a type of gameplay or genre where the player

explores a labyrinthine-like environment, facing: enemies, loot and traps

Output Bias and Probability Manipulation: A practice in game design where proba-
bilities are subtly altered to match player expectations. For example, a game may

make a 90% hit chance function more like 99% to avoid perceived unfairness.

Spiky Information Flow: A design approach where most of the game progresses
with manageable complexity, but sudden, disruptive events introduce large
amounts of new information at once. This keeps gameplay both strategic and

dramatic.

Variable-Ratio Reward Schedule: A reinforcement system where rewards are given
after an unpredictable number of actions. This type of reward structure,

common in both slot machines and loot boxes, tends to be highly addictive.

Skill Tree Systems: This is a way the game allows players to visually choose the
characters features. Often present in role-playing games such as the AAA game
GTA V (Rockstar Games, 2013).

2 LITERATURE REVIEW 2.2 Terminology

2.2.1 What are roguelikes?

One of the key terms used in this study is the genre classification roguelike. The
name stems from the orginal game, Rogue, developed by Michael Toy and Glenn
Whichmann. If features of Rogue are present in other games you call it roguelike
becuase it is like the game Rogue. Now, what are features of Rogue, or what are
roguelikes? A roguelike game is traditionally defined as one that incorporates
procedural generation, dungeon crawl and last but not least a roguelike contains
a permanent death system, often referred to as "permadeath." These design
principles originated from the 1980 game Rogue, from which the genre takes its
name. In roguelikes, each game session is unique due to the use of randomized
environments and item placements, forcing players to adapt strategically to
unfamiliar conditions. Additionally, when a player’s character dies, they
typically lose all progress and must start from the beginning, emphasizing high
stakes and replayability. The randomized structure of room progression and
stat-based item variations, in roguelikes, provide a fitting context to explore

input randomness in practice.

Over time, the term roguelike has evolved, and many modern games incorporate
only some of these features. Such titles are often referred to as roguelites but
they still preserve the core concept of randomness and high replay value.
Examples of popular modern roguelikes or roguelites include Slay the Spire,
Hades.> (Supergiant Games, 2020), and Dead Cells (Motion Twin, 2018) °*°.

2.2.2 Procedural Generation in Rogueikes

Procedural generation is a method in game design where content, such as
levels, maps, items, or events, is created algorithmically rather than manually.
Instead of a developer hand-crafting each individual element, a set of rules or
algorithms generates new combinations of content during gameplay or each
time the game is loaded. This technique allows for vast amounts of variability,
increased replayability, and reduced production time for content-heavy games.
Classic examples of procedural generation include the terrain in Minecraft
(Mojang Studios, 2011), the dungeon layouts in The Binding of Isaac (2011), or the

randomized weapons creation in Borderlands (Gearbox Software, 2009).

2Wikipedia: Hades, last accessed on: 05.11.2025.
SWikipedia: Slay the Spire, last accessed on: 05.11.2025.
4Wikipedia: Hades, last accessed on: 05.11.2025.
*Wikipedia: Dead Cells, last accessed on: 05.11.2025.

2 LITERATURE REVIEW 2.3 Purpose of Randomness in Games

Roguelike games frequently use procedural generation as a core mechanic to
achieve their defining characteristic: unpredictability. Since each playthrough
in a roguelike is meant to feel different, procedural generation offers a practical
solution for generating fresh challenges without requiring developers to design
hundreds of levels manually. In this sense, the two concepts: roguelike and
procedural generation—are often tightly linked, especially in popular discourse
and game marketing.

However, it is important to highlight that while procedural generation is
common in roguelike games, it is not a requirement. A roguelike can still
function effectively without full procedural generation, as long as it maintains
core genre features such as permadeath, random elements (input randomness),
and high replayability. The replacement of traditional procedural generation
can be achieved by using pre-designed content segments that are shuffled or
rearranged differently in each run. For example, a set of manually created rooms
can be randomly ordered to create a new game structure each time, mimicking
the effects of procedural randomness while preserving design control. Such
form of procedural generation is reffered to as modular procedural generation
because it uses premade modules and shuffles them randomly into a dungeon-

crawl map. ©

2.3 Purpose of Randomness in Games

Randomness is commonly used to introduce variety, replayability, and unpredictabil-
ity into games. Procedural generation, for example, allows games like Minecraft
and roguelikes to produce infinitely many levels and challenges, ensuring that each
playthrough feels fresh. Shadow of Mordor’s "Nemesis system" adapts based on player
actions, using randomness to dynamically alter storylines and characters.

In multiplayer games, randomness can be a tool for fairness. Games such as Mario
Kart (Nintendo, 1992) use random item distribution to give weaker players stronger
boosts, balancing out differences in skill. This ensures that newer or less experienced
players can still enjoy the game, making it accessible and fun for all participants.

®Fort: Controlling Randomness, last accessed on: 03.04.2025.

2 LITERATURE REVIEW 2.3 Purpose of Randomness in Games

2.3.1 Types of Randomness: Input vs. Output

A key distinction in game design is between input and output randomness. 7 Input
randomness refers to situations where a random event happens before the player
makes a decision. This includes shuffled cards in Slay the Spire, rolled dice in Dicey
Dungeons (Distractionware, 2019), or procedurally generated maps. Players adapt

their strategies to the conditions set by these random factors.

Output randomness, on the other hand, occurs after a player has made a decision.
For instance, in XCOM, a player chooses to shoot an alien, but whether the shot hits
is determined by chance a.k.a. randomness. Similarly, in Apex Legends (Respawn
Entertainment, 2019), the contents of a loot box are only revealed after the purchase.
Output randomness is often criticized because it introduces uncertainty after a player
has made a decision, meaning that even well-thought-out strategies can fail due
to chance alone. This can lead to a loss of perceived control, where players feel
that their success or failure is not determined by their skill or planning but by luck.
As a result, repeated negative outcomes, especially in high-stakes moments can
generate frustration, reduce motivation, and ultimately worsen the overall gameplay

experience.

The Ludology Podcast (Ep. 183) and online interviews with other game developers
suggest that while output randomness can create tension, it can also cause players to
feel a lack of control.® Games like FTL (Subset Games, 2012) were noted for generating
player frustration due to excessive output randomness, leading the developers to

shift toward more input-based randomness in subsequent titles like Into the Breach.

2.3.2 Strategic Impact and the Information Horizon

Game designer Keith Burgun introduces the concept of the "information horizon"
which s the gap between a player’s current turn and when new information is revealed.
Randomness affects how far into the future’ a player can plan. If randomness occurs

too frequently or without limits, it shrinks the information horizon, making planning
difficult.

Well-balanced randomness, especially input randomness with good information

horizon, can significantly enhance strategic depth by forcing players to adapt their

’Game Maker’s Toolkit. 2020. “The Two Types of Random in Game Design.”
https:/ /www.youtube.com /watch?v=dwI5b-wRLic

8Ludology Podcast: Input Output Randomness, last accessed on: 10.04.2025.

9Game Maker’s Toolkit: Two Types of Random, last accessed on: 24.03.2025.

10

2 LITERATURE REVIEW 2.3 Purpose of Randomness in Games

plans to new and unpredictable conditions. The sudden random input randomness
may be reffered to as spiky information flow. This type of randomness encourages
thoughtful decision-making and makes players feel that their success or failure is a
direct result of their own choices. Because the randomness occurs before the player
takes action, it frames the challenge rather than interfering with the outcome. Players
are given time and space to analyze the situation and select a response based on the
available information. As a result, failure tends to be interpreted as a consequence
of one’s own strategy rather than bad luck, which strengthens the sense of fairness
and personal responsibility. The game thereby supports improvisational gameplay
and creative problem-solving, while avoiding the feeling of making progress feel

arbitrary and not well programmed.

Some games mitigate chaotic randomness through design tricks. Pandemic (Z-Man
Games, 2008 controls card randomness by shuffling epidemic cards into separate piles
to avoid too many or too few appearing in a row thus optimizing the information
horizon!'” . Modern Tetris (1985) uses a ‘bag system’ to control randomness in the
distribution of pieces. Instead of selecting each new piece completely at random,
the game first creates a ‘bag’ containing one of each of the seven unique Tetris block
shapes. These pieces are then randomly shuffled and drawn one by one until the
bag is empty. Once all seven blocks have been used, a new bag is filled and the
process repeats. This method ensures that players receive every block type within a
short span of time, eliminating frustrating situations where, for example, the crucial
line piece (the ‘I’ block) fails to appear for many turns. The bag system preserves
randomness while providing a fair and predictable distribution, allowing players to

plan better and reducing the chances of losing due to bad luck alone'® .

2.3.3 Psychological and Behavioral Effects

Random reward systems often tap into psychological effects similar to gambling.
Loot boxes, for example, use variable-ratio reward schedules (like slot machines) to

stimulate dopamine release, reinforcing the desire to keep playing'? or spending.

Players often misinterpret probabilities of such slot machines. A 90% hit chance
might feel like a certainty, and a string of failed 33% outcomes may cause players
to believe the next one "has to" succeed. Developers sometimes adjust probabilities
to match player expectations. For example, Fire Emblem (Nintendo 1990) improves

07 Man Games: Pandemic — Rules, last accessed on: 05.11.2025.
UTetrisWiki: Random Generator (7-bag), last accessed on: 05.11.2025.
2Deterding u. a.: Mastering Uncertainty, last accessed on: 20.05.2025.

11

2 LITERATURE REVIEW 2.3 Purpose of Randomness in Games

1

hit chances behind the scenes'® , and Civilization VI (Firaxis, 2016) may guarantee a

success after repeated failures.

Tharsis (Choice provisions 2016) developer Zach Gage and others suggest using intuitive
systems like physical dice or cards to help players better understand randomness.'*
Games like Slay the Spire benefit from this clarity, as players can predict and adapt to
outcomes more easily based on known card effects. Similarly, Armello (League of Geeks,
2015) uses card-based actions and visible dice rolls in combat, which allow players
to assess risks and make informed decisions!® . The game also includes stat-based
effects, such as increased Fight or Body stats, earned through quests and gear, which
influence how randomness affects outcomes. Because these systems are transparent
and familiar and morevover an input-randomness, players feel more in control even

when luck plays a role.

By presenting randomness in ways that are easy to visualize and calculate, such
games reduce the perception of unfairness and support engagement even in uncertain
situations. It is to be considered that such addition may eliminate some surprise
factor which randomness-based game try to achieve since you tell the player their

chances and it will not come to them as a surprise.

2.3.4 Ethical and Design Considerations: Loot Boxes

Surpisingly, loot boxes raise ethical questions due to their similarity to gambling.
The ToDiGRA journal article explores this topic in depth, showing how loot boxes
operate under the same psychological principles as gambling machines, including

near misses, surprise rewards, and dopamine triggers.'®

Legal frameworks vary: Belgium and the Netherlands classify some loot boxes as
gambling and have banned them, while other countries have taken softer stances.”
Some companies attempt to increase transparency by disclosing item drop odds,
which means they publicly state the exact probability of receiving different item types
when opening loot boxes. For example, a game might indicate that a legendary item
has a 5% chance of appearing, while common items have a 75% chance. This helps

layers make more informed decisions.'® and reduces the sense of manipulation.
Yy

13Gerenes Forest: True Hit, last accessed on: 05.11.2025.

4Game Developer Staff: Randomness Transparent Tharsis, abgerufen am: 31.03.2025.
1>Game Developer Staff: Randomness Transparent Tharsis, last accessed on: 31.03.2025.
6Deterding u. a.: Mastering Uncertainty, last accessed on: 20.05.2025.

7Nielsen; Grabarczyk: Loot Boxes Gambling, last accessed on: 01.05.2025.

Njielsen; Grabarczyk: Loot Boxes Gambling, last accessed on: 01.05.2025.

12

2 LITERATURE REVIEW 2.3 Purpose of Randomness in Games

Academic studies also suggest that younger players are especially vulnerable, as they
lack the cognitive control to resist these psychological tricks. Financial harm, lack of
transparency, and addictive mechanics make loot boxes one of the most controversial

uses of randomness in games today.

In addition, some games implement what'’s called a pity system—a mechanic designed
to guarantee a rare or valuable reward after a certain number of unsuccessful attempts.
For instance, Hearthstone (Blizzard Entertainment, 2014) uses a pity timer that ensures
players receive at least one legendary card if they have opened 40 packs without
getting one'”. This system prevents extremely unlucky streaks and reduces player

frustration, while still maintaining the element of randomness.

These mechanisms help reduce the resemblance to gambling by minimizing the
sense of total unpredictability. In traditional gambling, outcomes are fully random
and players have no assurance that persistence will lead to success. By contrast,
pity systems provide a form of safety net, ensuring that effort (or spending) is
eventually rewarded. Disclosing drop odds also discourages the illusion of ‘beating
the system,” which is common in gambling psychology. Together, these features
make loot systems feel more controlled, transparent, and less exploitative—although
debates remain about whether they go far enough to fully separate games from

gambling-like mechanics.

2.3.5 Random Stat-Based Upgrades

One specific and increasingly popular design approach is the use of random stat-
based upgrades. A random stat-based upgrade is a game mechanic in which a
player’s character receives improvements to core abilities—such as health, strength,
defense, or special attributes through randomized systems. These upgrades differ
from traditional level-up or skill tree systems in that the enhancements are not chosen
directly by the player, but rather are assigned or acquired through probabilistic means
such as item drops, card draws, or quest outcomes. Unlike cosmetic or inventory-
based randomness, stat-based upgrades directly impact gameplay mechanics, often
shaping how players approach challenges in subsequent stages of the game.

This mechanic plays an important role in improving input randomness by introducing
variety early in the decision-making process. Players are often required to adapt
their strategies to the upgrades they receive, while still feeling in control because

they are responding to known changes rather than suffering from unpredictable

19Hearthstone Wiki: Pity timer, last accessed on: 05.11.2025.

13

2 LITERATURE REVIEW 2.3 Purpose of Randomness in Games

outcomes. In this way, random stat-based upgrades maintain player engagement by
providing new opportunities in each playthrough.

A prominent example is found in Armello, where players can increase their character’s
stats—such as Fight, Body, Wits, and Spirit through card-based equipment and
successful quest completions. The quests present players with randomized risks
and potential rewards, while gear cards are drawn from shuffled decks. Although
the specific rewards are not guaranteed, the possible outcomes are visible, allowing
players to make informed decisions. This clarity enhances the fairness of the system
and preserves agency, as players feel they are strategically navigating through
uncertainty rather than being passively affected by it™ .

Random stat-based upgrades are particularly well-suited to roguelike games, which
emphasize replayability and emergent strategy. By introducing new stat combinations
in each run, these systems encourage players to explore different playstyles and
make dynamic choices that align with the resources available. At the same time, they
avoid the potential frustration of output randomness by ensuring that player choices

remain central to success.

Table 1: Comparison of Randomness” in Game Design

domness

Type of Ran-| When It Occurs Impact on Player Example Games

Input Random- | Before the player | Shapes initial conditions; | Slay ~ the

and planning; perceived | Breach
as fair

ness makes a decision encourages adaptation | Spelunky, Into the

domness makes a decision rectly; can reduce per-| Apex Legends
ceived control; adds ten-
sion or frustration

Output Ran-| After the player | Affects outcomes di-| XCOM, Hearthstone,

Stat-Based Ran- | During upgrade or re- | Influences future strat- | Armello, Dead Cells,

domness ward phases egy; offers variety | Hades

without compromising

agency
Reward System | Upon opening | Triggers dopamine re-| Overwatch, FIFA Ul-
Randomness loot/reward boxes sponse; often criticized | timate Team, CS:GO

as manipulative; ethi-
cally controversial

20 Armello Wiki contributors: Armello, last accessed on: 04.10.2025.

14

3 HYPOTHESIS FORMULATED FROM LITERATURE REVIEW

3 Hypothesis Formulated from Literature Review

The research findings indicate that randomness enhances engagement and variety
most effectively when it preserves player agency and control. Consequently, the
proposed prototype will feature no output randomness. Combat mechanics will be
deterministic: if a player aims and executes an attack, the outcome is guaranteed.
Instead, uncertainty is introduced before decision-making through randomized

room sequences, upgrade options, and challenge variations.

A particularly promising design direction involves random stat-based upgrades,
which provide players with varied statistical enhancements or abilities. This mechanic
offers unpredictable yet fair variety across playthroughs, ensuring that each run
presents a unique strategic experience.

The concept of the Information Horizon—the strategic timing of surprise ele-
ments—provides a valuable framework for implementation. This principle informs
the design of features such as enemy ambushes and environmental effects, which
disrupt established patterns in meaningful ways rather than introducing randomness

arbitrarily, thereby requiring adaptive player responses.

The prototype will intentionally exclude loot boxes based on monetized randomness.
The literature demonstrates significant ethical concerns regarding player manipula-
tion in such systems, particularly when rewards are tied to financial transactions.
Excluding these mechanics supports the goal of creating an engaging experience
that respects player autonomy.

Additionally, the design incorporates a pity system to mitigate potential frustration
from consecutive unfavorable outcomes. When players receive weaker randomly
generated rewards multiple times consecutively, the system increases the probability
of receiving superior rewards. This mechanism ensures that randomness does not

become the primary determinant of repeated failure.

A practical constraint identified during development planning is the complexity
of full procedural generation. Given time and resource limitations, the approach
utilizes handcrafted rooms that are randomly assembled into different configurations
for each playthrough. This method maintains unpredictability and input random-
ness—core principles of roguelike design—while ensuring that each room is carefully
balanced for optimal gameplay. This approach is referred to as modular procedural
generation.

15

4 THE GAME 3.1 Quick Summary

3.1 Quick Summary

The prototype aims to demonstrate how randomness can be implemented strategically
to create challenging and varied gameplay while preserving player agency and control.
The proposed game concept synthesizes the research findings into a cohesive design:
aroguelike featuring deterministic combat mechanics, random stat-based progression
systems, vertical navigation elements, and dynamically assembled environments
that vary with each playthrough.

4 The Game

4.1 Core gameplay loop

Our game is a Roguelike and therefore contains a lot of random elements. This
includes random levels, random item placement, randomized drops and randomly
generated upgrades. The core gameplay loop consists of starting a run, which means
generating a new and unique level, as well as resetting any progress the player may
have made in a previous run. Playing the randomly generated level by defeating
enemies and collecting upgrades until the player either dies and a new run is started
or until the player has fully explored, at which point they can choose to advance
to the next level. This generates a new level layout but unlike starting a new run,
the player keeps all collected upgrades and the enemies grow stronger, getting
more health and increased damage. This loop is repeated as long as the player can
keep up with the ever increasing strength of the enemies or as long as the game
remains functional and interesting, should the player become powerful enough to

keep playing indefinitely.

4.2 Core Mechanics

4.2.1 Player Abilities

Our game is a first person shooter and thus, the player has most of the basic abilities
one would expect from such a game. Specifically the player is able to move around
using the WASD keys and look around using the mouse, as well as able to jump by
pressing the spacebar.

16

4 THE GAME 4.2 Core Mechanics

Further, the player is able to use two types of basic attacks: A ranged attack and
a melee attack. The ranged attack shoots a bullet in the direction the player is
facing and will deal damage to a single enemy it hits. The melee attack will damage
any enemies in a certain range in front of the player, the melee attack deals more
damage at the cost of being at risk of taking damage because of the proximity to the
enemies.

A feature more unique to our game is the ability for the player to change their own
gravity at will, by pressing either the arrow keys or left shift and WASD at the same
time. The player can do four different types of rotations: The up arrow (W) changes
gravity 90° in the direction the player is facing, the left arrow (A) rotates gravity 90°
to the right of the direction the player is facing, the right arrow (D) does the same as
the left arrow but to the right, the down arrow (S) flips gravity 180° while keeping
the player facing the same direction.

Because of level design reasons, the player is not able to change gravity to be any
direction, but can only change between six different directions. Whenever the player
decides to rotate, the game sets whichever of these directions is closest to the direction

gravity would be if it could point in any direction.

By design, the player is unable to aim, and therefore unable to attack enemies, while
in the process of rotating. This is due to the fact that the enemies cannot attack
the player while mid rotation because the player is moving too fast, hence, if the
player were able to defeat enemies while changing gravity, the player could simple
perpetually rotate to defeat all enemies without being at risk of being defeated
themselves. For the same reasons, the gravity change is designed to be slightly

disorienting for a moment.

Because the game is also a Roguelike, the player is able to pick up upgrades. There
are four different types of upgrades, one of them being the so-called active items.
These are upgrades that give the player a new ability when pressing the active item
key (E), and usually have a cooldown. Additionally, the player can only have one
active item at a time, but the current item will be dropped when a new one is picked
up, and thus is not lost forever.

4.2.2 Progression and Upgrades

Progression is delivered through four upgrade channels, designed to balance pre-

dictability with randomness and again to create variety across runs. First, the player

17

4 THE GAME 4.3 Procedural Level Generation in Three Dimensions

can collect direct, deterministic upgrades to core attributes: health (increasing surviv-
ability against burst and sustained damage), armor (percentage damage reduction,
mitigating incoming damage multiplicatively), melee damage and melee attack
speed (raising close-quarters throughput and responsiveness), ranged damage and
ranged attack speed (improving ranged time-to-kill and projectile cadence), move-
ment speed (enhancing positioning, strafing, and gravity-shift execution windows),
and mobility enhancements such as additional jumps and jump height (expanding

traversal options, especially in vertically oriented rooms).

Second, special upgrades are individually coded, bespoke effects that can alter
moment-to-moment gameplay or add entirely new capabilities. Examples include
making attacks explode on impact or unlocking a new movement or combat ability.
The purpose of this category is to introduce qualitative shifts that make runs feel,
sometimes complementing the gravity element, meaning the upgrade works well

together with the gravity-element.

Third, active items are player-triggered effects on a cooldown. They can do anything
similar to special upgrades but are situational by design, encouraging tactical timing.
Because they are not always-on, active itmes create clutch decision points, for instance,
using an active to breach a turret-guarded corridor, to stabilize after a poisoned hit,

or to reposition during a gravity inversion.

Finally, the system offers a random stat upgrade via a scrap option. Upon picking up
an upgrade, the player can elect to scrap it in exchange for a randomly generated stat
upgrade. The system allocates a total number of stat increases based on the original
upgrade’s rarity and distributes this budget randomly across eligible stats. This
mechanic uses the theme of randomness as a risk-reward choice: accept a known
benefit, or gamble for a potentially higher-variance outcome that may better fit the

current option.

4.3 Procedural Level Generation in Three Dimensions

The level is assembled at runtime by selecting from a preset catalog of modular
rooms. Each room is authored with one or more exit configurations that can connect
along the six cardinal directions in 3D space (north, south, east, west, up, down).
Generation proceeds by composing these rooms into a connected structure, ensuring
that exit types and positions are compatible where rooms meet. Conceptually, the

result can be viewed as a 3D graph in which rooms are nodes, exits are edges, and

18

4 THE GAME 4.4 Enemy types and their behaviors

the algorithm constructs the map by placing rooms so that their exits align and form

traversable links.

Randomness enters this pipeline in the selection and placement of rooms and in
the choice among alternative exit configurations for any given room. Because the
map operates in three dimensions, the generator is not constrained to a singular floor
layouts; vertical adjacency (up and down) is therefore an added element, enabling
spatial variety. The design favors variety and thus increasing the uniqueness of each
run: although the layout is random, the modular rooms as a base are not, thus in our

case this would be called modular procedural generation.

4.4 Enemy types and their behaviors

The enemy roster comprises three principal categories, each designed to read clearly
and to create different pressures on the player. Basic enemies form the frontline
threat. They primarily deal melee damage and close distance to the player. A variant
can switch to a ranged attack if the player is unreachable (for example, due to gravity
orientation, elevation differences, or blocked paths). Both melee and ranged versions
have poisoned variants that inflict a damage-over-time effect, increasing attrition

pressure and forcing resource-conscious play.

Turrets are stationary ranged threats that continuously fire at the player. Their role is
area denial and spacing control, especially potent in rooms with long sightlines or
limited cover. In addition to poisoned turrets, an elite turret variant is significantly
stronger, raising the tactical stakes of how and when to approach or bypass fortified
positions. Summoner enemies are stationary units capable, in principle, of calling
in any enemy type; however, to prevent overwhelming difficulty spikes, they
predominantly spawn basic enemies in practice. This preserves the intended
combat rhythm, creating waves that test crowd control and target prioritization,

without conflating encounter difficulty with unmanageable unit diversity.

Together, these categories create complementary pressures: basics test kiting and
positioning, turrets force line-of-sight management and cover usage, and summoners

add a soft timer that rewards aggressive disruption.

19

5 IMPLEMENTATION 4.5 Interactions, Balance and Pacing

4.5 Interactions, Balance and Pacing

The systems are were not just chosen arbitrarily but were designed to work together
and interlock. What that means is that gravity manipulation and 3D layouts shape
how enemies exert pressure; enemy compositions, in turn, stress different aspects of
melee and ranged combat; upgrades mediate the player’s response and long-term
strategy. Poison variants and elite turrets raise difficulty and burst threats, making
armor and health valuable, while movement and jump-related stats aid taking better
routes that can bypass or flank static defenses (e.g. due to enemies). Special upgrades
can amplify these relationships, for example, explosive attacks improving crowd
control against summoner waves and active itmes provide tactical spikes that let the

player take riskier and more fun decisions.

5 Implementation

5.1 Project Organisation

At the beginning of this project we had divided the work load clearly into three parts.
The programming part; divided into two main parts, consisting of programming
which was done by Nino Siegenthaler with support of Rafael Texeira da Silva and
the Game Design. The latter was done mainly by Rafael with support from Nino.
The remaining non-programming part was done by Vineet Nair. This included the
literature review, writing the questionnaire for the playtesting and organinsing the
playtestig, what we mean by that will be explained in the later segments.

5.2 Literature Review

To investigate the role of randomness in video games, we used a variety of sources
available to us, using a combination of general-purpose and academic sources.
Our research began with explanatory content from YouTube and Wikipedia, which
provided an accessible introduction to key terms and concepts. This initial phase
helped us build a terminology list that served as a foundation for identifying academic
keywords (see chapter 2).

The majority of academic literature was sourced from the open-access database

arXiv, which offered a wide range of research papers in computer science and game

20

5 IMPLEMENTATION 5.3 Pre-Input for Modelling: Blender

e

studies. Search terms such as “input randomness,” “procedural generation,” and
other were derived directly from our terminology list and entered into the arXiv
search tool to locate relevant sources. Additional searches were conducted using
Google Scholar and ResearchGate. Although ResearchGate provided a promising
insightful papers, we were unable to access them due to paywalls or permission
restrictions, and therefore focused primarily on sources available via arXiv and other

smaller but trustworthy databases.

Throughout the process, we documented all useful findings in a shared Word
document to maintain a clear overview and manage the large volume of information.
As recommended by our supervisor, Michael Schneider, we included only research
papers published by reputable or verifiably academic institutions. This increased the
credibility and reliability of our source base and ensured that the reviewed material

met academic standards.

While the inability to access certain ResearchGate papers represents a limitation of
our study, the broad selection of high-quality sources from arXiv still allowed us to
gather solid information on the topic.

5.3 Pre-Input for Modelling: Blender

This section distills practical Blender techniques we adopted during production. It
complements the previous chapters with concise, actionable steps you can follow
when modeling for real-time engines like Unity. The focus is on repeatable workflows
and hotkeys that speed up iteration while keeping meshes clean and export-ready.

5.3.1 Viewport Navigation and Transforms

¢ Orbit with the middle mouse button, pan with Shift + middle mouse, and
zoom with the mouse wheel. When precision is needed, type numbers during
a transform to enter exact values.

* Core transforms: G (grab/move), R (rotate), S (scale). Constrain to an axis by
pressing X, Y, or Z immediately after the command (e.g., G then Z). Hold Shift

while transforming to slow down for fine control.

21

5 IMPLEMENTATION 5.3 Pre-Input for Modelling: Blender

Figure 1: Showing G then Z Grab

e Use the number pad (1/3/7 for front/side/top; Ctrl for opposite) or View
menu to quickly re-orient your view. This keeps selections accurate and avoids

skewed edits. 2!

Figure 2: Side View

5.3.2 Edit Mode and Selection Fundamentals

* Toggle Object/Edit Mode with Tab. In Edit Mode, switch selection type with
1/2/3 for vertices/edges/faces.
* Proportional Editing (O) is invaluable for soft, organic changes. Scroll the

mouse wheel to adjust the influence radius while moving, rotating, or scaling.

* Link Select (Ctrl + L) expands your selection to all connected elements—useful
when a model is composed of multiple shells.

21Blender Guru: Donut, last accessed on: 06.11.2025.

22

5 IMPLEMENTATION 5.3 Pre-Input for Modelling: Blender

Figure 3: Sphere of influence

Figure 4: Link select

* Separate (P) splits selected geometry into a new mesh object, helping when

you want clean hierarchies or to apply modifiers to only part of a shape. 2>

5.3.3 Fast Modeling Toolkit

e Extrude (E): grows new geometry from selections. Immediately constrain to an

axis (E then Z, for example) to avoid diagonal drift.

* Loop Cut (Ctrl + R): adds supporting edges for better control over curvature
and deformation. Roll the wheel to add multiple cuts before confirming.

* Bevel (Ctrl + B): replaces razor edges with small chamfers for more realistic
shading. Add segments for smoother results but keep budgets in mind.

22Blender Guru: Donut, last accessed on: 06.11.2025.

23

5 IMPLEMENTATION 5.3 Pre-Input for Modelling: Blender

Figure 5: Showing Extrude

Figure 6: Showing loop cuts

¢ Knife (K): draw custom cuts to introduce detail exactly where needed. Use
snapping to stay orthographic when required.

e Hide/Unhide (H / Alt + H): temporarily removes selections to work without
visual clutter. X-Ray view helps when selections must pass through the mesh.?

2Jelle Vermandere: Character, last accessed on: 06.11.2025.

24

5 IMPLEMENTATION 5.3 Pre-Input for Modelling: Blender

Figure 7: Showing Bevel

Figure 8: Showing Knife

5.3.4 Productive Use of Modifiers

Work non-destructively and commit only when necessary:

* Solidify: adds thickness to shells and panels. Great for ramps, vases, and any
surface that needs volume.

* Subdivision Surface: smooths shapes by subdividing and averaging. Combine
with supporting loop cuts to preserve form.

e Mirror: model only half (or a quarter) of a symmetrical object; ensure the origin
sits on the mirror plane for predictable results.

* Boolean: union, subtract, or intersect volumes to cut holes or blend shapes
quickly. Apply and clean up supporting topology afterward.

Keep modifier order intentional: for example, Mirror before Subdivision to keep

seam continuity, and Solidify after smoothing to maintain even wall thicknesses.

25

5 IMPLEMENTATION 5.3 Pre-Input for Modelling: Blender

(a) Hidden Perspective of Hide and Unhide (b) Unhidden Perspective of Hide and Unhide

Figure 9: Hide and Unhide

5.3.5 Materials and Viewport Display

Assign materials in the Material Properties panel. Use the Principled BSDF shader
for most surfaces—tune Base Color, Roughness, and (optionally) Metallic. For quick
look-dev, switch to Material Preview and test how your model reads from different
angles and light intensities. Name materials clearly so they can be reused across

assets.?* 2

Figure 10: Inexperienced vs. Experienced Mean values

5.3.6 Rigging Primer: Armatures and Weight Painting

When an object must deform (creatures, flexible props), add an Armature and parent
the mesh to the skeleton with automatic weights. Enter Pose Mode to test joints early.
Then refine in Weight Paint mode: paint more influence (red) on vertices that should
follow a bone and reduce influence (blue) where the mesh must remain stable. Keep

bone names and hierarchy tidy—clean rigs export to Unity more reliably. 2

24Jelle Vermandere: Character, last accessed on: 06.11.2025.
25Blender Guru: Shading, last accessed on: 06.11.2025.
%6Jelle Vermandere: Character, last accessed on: 06.11.2025.

26

5 IMPLEMENTATION 5.4 Modeling with Blender

=

B Scene Collection
-— i

Vv || Collection

v metarig

¢y Animation

Pose 27

>
>
> metarig.001 v
>

Figure 11: Showing the armature as parent
5.3.7 Keyframe Animation, With or Without Rigs

For rigid objects, animate directly in Object Mode: enable Auto Keying, set a first
key, transform at new frames, and Blender records changes. For skinned meshes,
switch to Pose Mode and key bone transforms. Use the Dope Sheet to manage clips
per action and the Graph Editor to smooth easing. Keep clips short and purposeful
(idle, walk, open, close) to simplify reuse in Unity.?”

Figure 12: Keyframe animation with rig Fig

5.4 Modeling with Blender

This section distills practical Blender techniques we adopted during production. It
complements the previous chapters with concise, actionable steps you can follow
when modeling for real-time engines like Unity. The focus is on repeatable workflows
and hotkeys that speed up iteration while keeping meshes clean and export-ready.

?7Telle Vermandere: Character, last accessed on: 06.11.2025.

27

5 IMPLEMENTATION 5.4 Modeling with Blender

The creation stage covers the modeling of all objects in the project: ramps, stairs, a
pavilion-like platform, a vase, and characters. In Blender, every object is represented
as a mesh, which is composed of vertices, edges, and faces. Vertices are points
in three-dimensional space that define the corners of geometry. Edges are the
straight lines that connect vertices, and faces are the surfaces enclosed by edges. By
manipulating these components, it is possible to shape complex objects from simple

primitives.

5.4.1 Ramps at 45°, 35°, and 25°

The ramps serve as inclined surfaces to test movement and interactions in Unity.
Each ramp was based on a flat rectangular plane, which provides a simple surface
for modification. To achieve the desired slopes, the vertical positions of vertices
along the Z-axis were adjusted according to trigonometric calculations, using the
tangent of the angle multiplied by the base length to determine the correct height.
This ensures that the ramps are mathematically accurate and consistent with the
intended gradient. To give the ramps depth, a Solidify Modifier was applied. This
modifier adds thickness to a mesh along the direction of its normals, which are
vectors perpendicular to each face of the mesh. Normals are critical because they
define how surfaces interact with light and physics calculations, such as collision
detection in a game engine. It is important to ensure that all normals are correctly
oriented, so the Recalculate Normals function was used to automatically align them
outward, guaranteeing correct shading and interactions. The ramps were scaled and
transformed in three-dimensional space to match the planned dimensions. Applying
these transformations sets the scale to the default while preserving size, ensuring
consistency when exporting to Unity. This combination of accurate vertex placement,
solidifying, and correct normals produced functional ramps with realistic thickness

and proper surface orientation.

5.4.2 Stairs at 45°

The staircase was designed to connect surfaces at a steep angle and allow smooth
transitions for movement. It was initially constructed from a cube, which was
subdivided horizontally to define each individual step. Subdividing a mesh adds
additional geometry, allowing precise shaping and control over proportions. To
duplicate the steps evenly, the Array Modifier was employed, automatically repeating
the geometry along a specified vector while maintaining consistent spacing and

28

5 IMPLEMENTATION 5.4 Modeling with Blender

Figure 13: Slope with 45°

Figure 14: Slope with 25°

alignment. This method avoids manual repetition and ensures uniformity across
all steps. Edges were refined using the Bevel Modifier, which adds small angled
surfaces along edges. This softens sharp edges and produces more realistic lighting
interactions by avoiding harsh shadows. By combining subdivision, duplication, and
beveling, the staircase achieved both geometric accuracy and visual realism while

remaining structurally consistent with the ramp slope.

5.4.3 Pavilion-Like Platform

The pavilion combines multiple primitive shapes to create a modular architectural
structure. The floor was created from a scaled cube, forming a flat base. The
roof was developed from flat planes extended through extrusion, a process that
generates new geometry by projecting a selected surface along a direction. Pillars

29

5 IMPLEMENTATION 5.4 Modeling with Blender

Figure 15: Stairs with 45°

were created from cylindrical meshes and positioned along the edges of the platform.
To maintain symmetry and reduce repetitive work, a Mirror Modifier was applied,
which automatically duplicates and inverts geometry along a chosen axis, ensuring
consistent placement. All elements of the pavilion were organized into a hierarchical
structure using parenting, where the movement or transformation of the main base
affects all child objects. This allows the entire pavilion to be moved, scaled, or rotated
as a single unit while preserving the relative positions of roof, pillars, and base,

which is essential for integration into Unity as a modular structure.

5.4.4 Vase-Like Structures

The vase was modeled starting from a cylinder. Vertices were scaled along the
vertical axis to produce a tapered profile, forming a smooth curve from the base
to the opening. To refine the shape, loop cuts were added, which insert additional
edge loops along the mesh to allow precise control over curvature and shape.
Proportional Editing was used to adjust multiple vertices simultaneously, creating
smooth transitions and natural curves across the surface. To enhance smoothness and
realism, the Subdivision Surface Modifier was applied, which subdivides each face
into smaller segments and averages their positions to create a refined surface. The
Solidify Modifier added thickness to the walls of the vase, transforming it from a flat
shell into a volumetric object suitable for physical interaction or collision detection in
Unity.

30

5 IMPLEMENTATION 5.4 Modeling with Blender

Figure 16: Greek Pavilion created on Blender

5.4.5 Characters

Character models were first developed based on hand-drawn concept sketches that
defined the general appearance, proportions of each figure. These were followed by
movement sketches, which visualized possible poses and motion sequences for later
animations.

The actual models were then created in Blender from basic humanoid meshes.
Loop cuts, extrusion, and proportional editing were used to define body contours
and limbs. Unique features were added to distinguish individual characters and
emphasize their roles in the game. Rigging was performed using the Armature
system, which establishes a hierarchical skeletal structure of bones to control the
mesh. Each bone influences a specific portion of the model, while the hierarchy

ensures that movements in parent bones correctly affect connected child bones.

Weight Painting was applied to assign bone influence to specific vertices, preventing
unnatural mesh deformations during animation. Animations such as walking,
running, or climbing were created by manipulating the armature in Pose Mode at

defined keyframes along the timeline. The Graph Editor was used to refine motion

31

5 IMPLEMENTATION 5.4 Modeling with Blender

Figure 17: Vase structure example on Blender

curves, smooth transitions, and precisely control timing. Each animation was stored

as a separate action in Unity as an independent sequence

5.4.6 Texturing

After modeling, textures were applied to all objects. Texturing involves creating
materials that define how surfaces appear in terms of color, reflection, roughness,
and surface detail. UV Mapping was performed to translate three-dimensional
surfaces into two-dimensional coordinates, allowing textures to wrap correctly
around complex shapes. Smart UV Projection was used to automatically generate
UV maps for objects with intricate geometry, ensuring textures are applied without

distortion. Materials were developed in Blender’s Shader Editor, a node-based system

32

5 IMPLEMENTATION 5.4 Modeling with Blender

Figure 18: Sketch of Minotaur

that enables combining multiple inputs to create complex surface properties. The
Principled BSDF Shader was the primary material, allowing control over base color,
metallic properties, roughness, and normal maps. Procedural textures generated
variations in color, roughness, or surface detail mathematically, enhancing realism
without increasing polygon counts. Concrete textures with roughness and bump
maps were applied to ramps, wood textures to stairs, combinations of stone, wood,
and metallic materials to the pavilion, ceramic glazing to the vase, and layered
materials for characters’ skin, clothing, and features. These textures interacted with
light and shadows according to the normals and geometry of each mesh, enhancing
realism in both Blender and Unity.?®

2BBlender Guru: Shading, accessed on: 06.11.2025.

33

5 IMPLEMENTATION 5.4 Modeling with Blender

Figure 19: Minotaur in Blender

5.4.7 Export to Unity

The final step was exporting the models and animations to Unity using the FBX
format, which preserves mesh geometry, UV maps, armatures, and animation data.
Transformations and modifiers were applied to ensure that scale, rotation, and all
procedural changes were correctly incorporated. Normals were checked to confirm
proper lighting and collision behavior in Unity. Animation sequences were exported
alongside characters, allowing Unity’s Animator system to recognize them as discrete
clips. All objects were imported into Unity, tested for alignment, texture accuracy,
collision, and functional interaction. The ramps and stairs maintained their slopes
and spacing, the pavilion retained its modular hierarchy, the vase retained its shape
and surface details, and characters animated smoothly without mesh distortion.
This workflow ensured a seamless transition from Blender to Unity, preserving both
aesthetics and functionality.

5.4.8 Rooms Implementation

The implementation of rooms was carried out entirely within Unity, while the
3D assets used to construct them were created beforehand in Blender. These
assets included architectural elements and decorative models designed according
to the game’s ancient Greek theme, characterized by marble textures, symmetrical
structures, and occasional bronze statues. The central element of the room system
is a custom Unity script that automatically places rooms based on the position and
orientation of their entrances. This system ensures that rooms connect logically
during level generation and that the layout remains coherent, even when generated

dynamically. To enable this functionality, I had to design individual room variations

34

5 IMPLEMENTATION 5.4 Modeling with Blender

Figure 20: Character/Figure example

for each possible entrance configuration. Each variation was constructed manually
in Unity by combining and arranging the available models. In total, 63 unique
room variations were implemented, each representing a different combination of
entry points. This process required significant planning and iteration, especially
due to the game’s unique gravity mechanic: the player can alter the direction of
gravity individually, meaning that each room must function correctly on all six
sides of a cube. To achieve this, every room had to be rotated and tested for
each possible gravity orientation to ensure that geometry, objects, and navigation
behaved as intended. Designing and aligning all rooms to fit this mechanic proved
to be one of the most time- consuming parts of the implementation. It demanded
both technical precision—to maintain proper alignment and prevent overlaps—and
creative variation, as the limited number of models had to be reused in different
configurations to avoid visual repetition. The final result is a flexible and coherent
room system that supports the labyrinth-like structure of the game world while

maintaining visual consistency and thematic coherence

35

5 IMPLEMENTATION 5.5 Programming

Figure 21: UV Editing Screen

mc

~ Recent

Figure 22: Export Window
5.5 Programming

5.5.1 Random Generation

As mentioned before, all the levels in the game are randomly generated, however
we do not have truly unique levels where every part is random, but we created a
system that will randomly arrange premade individual rooms into unique levels.
For simplicity we decided early on that all rooms are, at least internally, going to be
the same size. This means that the exits of a room are always in the same positions
relative to one another. This allowed us to still make smaller rooms by blocking off
parts of a normal sized room, but, more importantly, we could use a relatively simple
grid-based system for the random generation. By having all rooms in a single grid
we did not have to account for exits that do not align properly or check if rooms

would overlap. Now, we have mentioned exits quite a few times, but what does it

36

5 IMPLEMENTATION 5.5 Programming

Figure 23: Picture in Unity Showcasing a Room

actually mean for a room to have certain exits?

Since our generated dungeons are 3-dimensional, allowing for up/down exits, a room
can have up to 6 exits and those exits can then be arranged in different configuration,
allowing, in total, for 63 different types of rooms. In order for the generation to
always work, it needs to have a room that can fit in any possible configuration of
connecting exits. Therefore we had to manually create all 63 possible rooms. First
we created 3D-models for all configurations of exits relative to each other, meaning
we did not create all possible rotations of exits. For a room with 2 exits for example,
we had to create 2 models, one with the exits opposite one another, and one with
the exits forming a corner. Once we had all these models, we exported them into
Unity in order to also create all possible rotations, we chose this method because
exporting rotations of 3D-models into Unity is complicated, and it was easier to just
do the rotations with the already imported rooms. Now, for the system that actually
arranges the rooms into unique levels, we once again used the exits as a basis. First
we named all the room objects according to their total exit number and which exits
they had (Up, Down, Left, Right, Top, Bottom) adding the first letter to the name. For
example, a room with 2 exits, one to the left, one to the right, would be named 2LR.
Next, we created a 2-dimensional array of strings, which will be our grid, and a list of
positions in said grid where there still needs to be a room placed. We used an array to
keep track of what exits a certain position in the grid needs to have by adding a letter
representing the direction of the required exit to the corresponding item in the array.
We once again used the letters we also used in the naming of the rooms. Further we
defined an array of objects in which we placed all the room objects that we created
earlier and we also defined other variables that let us adjust the parameters of the
generation, such as maximum room count or the distance between rooms.

37

5 IMPLEMENTATION 5.5 Programming

With these main factors defined, the generation begins by placing a certain starting
room in the center of the grid and adding the corresponding exits to the adjacent
positions in the grid. The script then selects the first item on the list of positions that
need to be filled and starts the process of eliminating all rooms that do not have the
required exits. Thanks to the naming of the rooms this is rather simple, it simply
requires us to check if a certain direction of exit is required by reading the string for
the selected position, and then looping through all possible rooms, checking if the
same letter is contained in the name of the room and eliminating the room, if it does
not. After repeating this procedure six times for all directions, we are left with a
list of rooms that will connect to all adjacent rooms. You might think that we are
already done, having eliminated all rooms that would not connect to the adjacent
exits, however we also had to account for the reverse, meaning that we had to check
if one of these possible rooms would have exits that would lead in a direction where

one of the neighbors does not.

At this point, the script splits into two possible paths, the first is used for closing off
the level once it has reached the minimum number of rooms, the second path is used

when the minimum number of rooms has not yet been reached.

We will first examine the second path.

The second path is simple but long. Essentially it selects a random one of the possible
rooms and then checks all adjacent positions in the grid if there is already a room
there and if there is, whether it has a corresponding exit to the room the script is
trying to place. For example, if the selected room has 2 exits, one to the left and one
to the right, it checks if there is a room to the right of it, and if there is, it checks if it
has an exit to the left. It then repeats this for all exits. If something is invalid, the
script removes the room from the list of possible rooms and randomly selects another
room from the list. This is done randomly so we can have multiple versions of a type
of room, without the same version being selected every time. Finally there is one
more check; since the minimum number of rooms is not yet reached, the script has
to make sure that by placing the selected room it is not closing every remaining exit.
This is achieved by taking the total number of exits a room has and then subtracting
1 for each "connected" exit. If the result is larger than zero, the room is valid and it is
placed and the script removes the now filled position from the list of empty positions

and adds all exits to the array.

As for the first path which is used when the minimum number of rooms is reached.
Once the minimum is reached, we want the script to stop and place only as many
rooms as necessary to close all remaining exits. This path works similarly to the first

path, but a room is only valid if it connects perfectly, leaving no unconnected exits.

38

5 IMPLEMENTATION 5.5 Programming

Furthermore there is one more condition the script has to validate namely chest
rooms. Chest rooms are a second type of rooms that contain an upgrade. In order to
make sure that the player finds enough upgrades, there is a minimum number of
chest rooms. Chest rooms can be randomly selected just like normal rooms, however,
if placing a chest room in every open position would reach the minimum number of
rooms, the script activates chest-mode, which means it will only place chests until all
open positions are filled.

5.5.2 Changing gravity

In order to make it possible for the player to navigate the 3-dimensional level structure,
we decided to implement the ability for the player to change the direction of gravity
freely. The gravity script is the longest one we made, however most of it is actually
repeated multiple times, so in reality there are only a few unique things in the

script.

We begin with is the function that is responsible for actually applying gravity to
the player, no matter what direction. Because Unity’s default rigidbodies do not
support gravity in other directions, we had to make our own gravity. Thankfully
however, this is not very complicated as gravity is simply a constant force that has to
be applied to the player. In our version, gravity is a vector multiplied by a constant
that defines how strong the gravity should be and this vector is then applied as a
force to the player in the fixed update, meaning that the code will be repeatedly
executed with a constant delay, unlike the "regular" update which runs the code once
per frame, which would make gravity dependent on the framerate, as it would be
applied more often, and thus be stronger if the framerate is higher.

Now for the part that actually changes gravity, as well as rotates the player object
accordingly, this part was rather difficult to code because rotations in Unity are
difficult. There is no easy way to just rotate an object, for example, 90° to the right,
relative to the direction the object is facing. Because of this, we decided to manually
code every rotation the player could rotate to.

At first we thought we would just have to find six rotations, however we soon realized
that the rotations also change based on which direction the player is facing when
they start the rotation, and thus, we had to manually find and define twenty-four
3-dimensional vectors. To do this we used a system to name the vectors that uniquely
identifies each one by the plane the player is standing on, and which direction they

are facing. The names of the vectors were constructed by writing the direction the

39

5 IMPLEMENTATION 5.5 Programming

player is facing as pX/pY/pZ for positive X/Y/Z and nX/nY /nZ for negative, and
then doing the same thing again for the plane on which the player is standing. For
example, the vector that gives the rotation of the player when they are facing on the
positive X and standing on the negative Y, would be pXnY.

After we defined all the vectors, we had to create a function to gradually rotate the
player. We did this by dividing the difference between current and target rotation,
and rotating the player bit by bit with a short delay in between.

Further, we defined a function to round the relative direction vectors of an object;
these direction vectors are the relative up, forward and right direction of any object.
This means that the relative "up" vector always points straight up from the object, no
matter how you rotate it. In our case, we needed to round these directions, meaning
we wanted to know which axis was the "main" one for, for example, the relative up
vector. We did this by checking whether each component of the vector was larger
than the square root of 0.5. This works because the length of the relative vectors
is always 1. For this reason and because one axis is always irrelevant because it is
perpendicular, if one of the vector components is larger than the square root of 0.5,
the other one can’t be as well, because if both of them were larger then V0.5 then the

length would be larger than 1 (because \/ \/0.52 + \/0.52 = 1 (Pythagorean theorem)) .
Note that we also assume that it will never be the case that both are exactly V0.5,

because it is too precise to ever realistically happen. The function then returns a

vector where all components that are not larger then V0.5 are 0 and the one that is, is
1. With that, all required functions are defined.

The script starts when it detects exactly one of four inputs, the arrow keys by default,
and then sets the gravity vector to the rounded relative vector corresponding to the
button pressed. For example, if the player inputs to rotate to the right, it sets the
gravity to the axis that is the closest to the right of the player object. The script then
starts one of four separate functions, one for each direction the player can rotate,
which has code paths for every direction the player could be facing and standing
on. Thankfully we do not have to check if the player is facing the direction they are
standing on because this never affects the outcome, however we do still have to check
for a lot of rotations. Specifically we do it in the following order:

1: Is the player facing either the positive or negative y axis?

1.1: Is it the positive y axis?
1.1.1: Is the player standing on either the positive or negative x axis?
1.1.1.1: Is it the positive x axis?
rotate to the correct direction

40

5 IMPLEMENTATION 5.5 Programming

1.1.1.2 Is it the negative x axis?
rotate to the correct direction

Allin all, we have 24 possibilities per direction the player can rotate, so 96 possibilities
in total.

5.5.3 Upgrades

In total there are four different types of upgrades the player can pick up in the
game: Random upgrades, stat upgrades, custom upgrades and active items. The
stat upgrades are relatively simple: All of the player’s stats are stored in a single
script, therefore applying a stat upgrade, random or not, just requires updating
the variables of the player-stats script. Thus, all the stat upgrades need are public
variables to assign the increases and decreases in stats and a function to apply the
changes.

The random upgrades work by distributing a total amount of increases, given by the
rarity of the non-random upgrade, that are randomly distributed across the possible
stats. These values are then turned into a string and displayed in the UI once the
player picks up the upgrade.

As for custom upgrades, the process of applying them is more difficult. First, what
we mean by custom upgrade is any upgrade that requires additional code to be
executed in order to function. One example of a such an upgrade would be the
melee-dash upgrade, which causes the player to dash a short distance when using a
melee attack. This is accomplished by having a new script that, when attached to
the player, executes a dash when receiving the input for a melee attack. While the
concept of a custom upgrade is simple, the process of actually attaching them to the
player object is very much not so. This is because, in Unity, there is no variable type
that can be assigned a script type. You can only store specific instances of a script
in variables. Hence, we were not able to simply create a script that attaches a given
upgrade-script to the player object; instead we had to add the part of attaching the
script to the actual upgrade script itself. More specifically, we created a template that
contains the code for attaching itself to the player, should the object it is currently
attached to not be the player. Because of this method we only need set the name of
the script to be added. With this, we could create an object for each upgrade that
already had the script attached which could then, unlike the script itself could be

assigned to a variable. Through this, when the player chooses to pick up a custom

41

5 IMPLEMENTATION 5.5 Programming

upgrade, the upgrade object, which handles the generation of the random upgrade,
the UI and the pickup, would instantiate the assigned script object, which then
contains the upgrade script. The script then realized that it is not attached to the
player object and adds itself to said object before deleting the script object.

The active items work a bit differently than the other types of upgrades and are
consequently also programmed differently. In our game, an active item is any custom
upgrade that is activated by pressing a dedicated active item key, in addition, the
player can only have one active item at a time, because otherwise the active item
button would trigger all effects at once. Because of this restriction, we wanted the
player to be able to switch back to an active item that they discarded earlier and hence,
we needed to spawn the correct upgrade object if the player picks up a new item.
The pickup of the item has once again the same problems as the custom upgrade,
requiring the attaching of a specific script to the player, and so we were able to use the
same solution with some minor tweaks. Again, just like with the custom upgrades,
we once again had two objects, one with the actual upgrade script, and one that
spawns said object. The pickup functions with only two changes: first we want the
player to be able to see what item they currently have equipped and, because you
cannot assign public variables (variables that can be set in the editor) for a script
but only for a script already attached to the object, we need to transfer the public
variables from the script on the upgrade object to the script on the player object.

Second, there is a feature in Unity that, while in most cases actually quite useful, is
detrimental to the fact that we want to instantiate the same object the player picked
up once the item is dropped again. Said feature is the fact that, when assigning a
public gameobject variable on a prefab ("templates” for objects that are not present
in a scene but can be instantiated from our assets) to be that same prefab and then
instantiating the prefab, the variable instead becomes a reference to the specific
instantiated gameobject, rather than the prefab. Hence, if we try to instantiate that
object, we are trying to instantiate an object that has long since been deleted. While
we might have been able to do some workaround where we don’t actually delete
the object but just deactivate it and then move to where it needs to be, there would
still have been problems with multiple item objects and changing levels. Therefore
we opted for a less elegant, but still functional, solution, by creating copied of each
active item object and assigning the other copy respectively, and, since the assigned
object is then not the same prefab the script is on, it remains a reference to a prefab,

rather than one to an instantiated object.

42

5 IMPLEMENTATION 5.5 Programming

5.5.4 Enemies

In the game there are four types of enemies: Melee enemies that deal contact damage,
ranged-melee hybrids that switch to ranged attacks when the player is unreachable,
turrets that constantly shoot at the player and summoner enemies that spawn either
melee or melee-ranged enemies. All the enemies share the same script for their
health, containing variables for maximum health and current health that can be

adjusted to fit any enemy.

Additionally, all enemies use the default Unity navmesh pathfinding system, which,
thankfully had been updated to support different rotations not too long before we
started the project, allowing us to use it with only minor tweaks. One limitation
that it has however is the fact that it is, while not quite impossible but very difficult
to properly have an enemy change gravity. This lead us to create the melee-ranged
hybrids, which are a solution to the problem that the player was able to just stand on
a wall on which there are no enemies and defeat an entire room using ranged attacks.
Because the navmesh package is easy to use, the basic enemy script really only
contains a function for dealing contact damage that is shared with the other enemies
and a single line of code to continuously set the target of the pathfinding to be the
player.

The turrets and summoner enemies are also relatively simple, in fact they both use
the exact same script except that the summoner is set to "shoot" other enemies instead
of bullets. Said script is doing not much more than instantiating whatever object
is set to be the bullet and giving it a velocity towards the player. The only other
thing the script does is account for the fact that turrets can only be attacked using
melee attacks. We did not want however that it is possible for a turret enemy to take
hundreds of melee hits, should the player opt for a ranged build, and thus decided
to make defeating a turret require exactly five melee hits, no matter the damage.
Because of this, the turret script also sets the health of the turret to be five times the
player’s melee damage.

The script for the melee-ranged hybrid enemies is by rather more complicated than
the others. First it checks whether the player is reachable, by checking if the player
has the same gravity as the enemy and if so, whether the path to the player is
complete. If the player is reachable, the code is exactly the same as the melee enemy,
setting the pathfinding target to be the player. If the player is not reachable on the
other hand, the enemy enables ranged mode. It first waits for three seconds and then
checks if the player is still unreachable (this was done to prevent the enemies from
enabling ranged mode it the player so much as jumped). If this is the case, the enemy

43

5 IMPLEMENTATION 5.5 Programming

enables a particle system to show that it is currently charging a ranged attack, and
then waits for a few seconds to charge the attack. Once it is done charging, the enemy
then sets the target position of the attack to the player’s current position, but again
waits a moment to actually attack in order to allow the player to dodge the attack.
After waiting it then simultaneously creates a line renderer to the target position
and a spherical collider at the target position. It does this because the beam attack
is not actually a beam but only a collider that will deal damage if the player is still
close enough to the target position. Further, the enemy assigns the different damage
variables of the collidier and then waits for another moment before destroying the

collider again.

5.5.5 Pity-system

Our game features a so-called pity-system; this means that with every instance
of "bad luck", it becomes more likely for the player to experience "good luck". In
our game, this means getting good and bad upgrades, defined by the rarity of the
upgrade. To implement this system, we created a script attached to the player that
tracks whenever the player picks up a common or uncommon item and adds an
percent increase to the chance of getting rare and legendary items with the increase
being half as big for uncommon upgrades as for common ones. If the player picks up
a rare item, nothing changes, we chose to not decrease the chances when picking up
a rare item, because it would lead to the pity system only ever granting rare items.
This would happen because the chances would increase enough to get a lot of rare
items but not enough for it to be likely to get a legendary item. Consequently, we
chose to only reset the pity system when picking up a legendary item, at which point
it completely resets.

While, in theory, the actual increase of the odds should only require changing
some variables in the upgrade spawning objects, the problem is that the upgrade is
chosen as soon as the upgrade spawner is instantiated. Because of this, we cannot
retroactively change the odds of spawning different rarities of upgrades and actually
get a change in the spawn rates. To solve this problem, we implemented a solution
that we later also used for the spawning of enemies. Since all the rooms are on a
set grid with a set distance apart, it is possible to exactly determine which room the
player is currently in, by determining in which grid cell they are. Through this we
can know when the player entered a specific room and, as long as we start with all
objects in that room deactivated, can tell the room to only at that point activate the
objects. Thus, the upgrade will only be chosen once the player enters the room and
is therefore affected by the changed odds of the pity system.

44

6 QUESTIONNAIRE FOR PLAYTESTING

6 Questionnaire for Playtesting

6.1 Method and approach

We designed a questionnaire to assess our proof of concept in terms of seven core
themes, all of themes are connected in some way or the other to the conclusion
of the literature review. These were the themes: fairness, control/agency, clarity,
excitement, satisfaction, replayability, and frustration and a set of prototype-specific
checks that confirm key implementation choices, such as deterministic combat (no
random hit/miss), the clarity and fairness of stat-based upgrades, whether modular
rooms feel coherent yet fresh, whether players notice the pity mechanism, whether
they understand when luck matters, and the absence of monetized randomness. In
line with AAPOR, we wrote short, as the AAPOR guidleine suggested: single-concept,
neutral statements, arranged the flow logically, and used online randomization with
Al within constructs, where appropriate, to limit order effects; we also kept the
burden low (about five to seven minutes), offered “Not sure” for subtle mechanics,
and included an attention check and a consistency probe to support data quality and

transparent reporting.

As already mentioned, each topic is linked to specific items and a corresponding
statement from our literature review. For fairness, we use C1, C2, and the reverse-
worded C3 to validate that prioritizing input randomness and avoiding output
randomness supports perceived fairness and that random events should feel rule-

consistent rather than arbitrary.

* The results in the game felt fair.
* The randomness elements in the game felt sensible.

* Bad luck mattered more than my choices.

Control/agency is captured with C4, C5, C6 (reverse), and C24 to test the claim that
input randomness preserves planning space and agency, whereas output randomness

undermines control and can feel unfair.

* My success mostly came from my choices, not luck.

I could plan ahead because surprises came before my choices.

My actions felt less important because there was too much luck.
* My success was mainly due to my decisions, not luck. (Duplicate of C4)

45

6 QUESTIONNAIRE FOR PLAYTESTING 6.1 Method and approach

Excitement is assessed with C7, C8, and C9 (reverse), reflecting the proposition that
well-timed unpredictability generates positive tension while poorly timed or opaque

randomness harms engagement.

* Surprises in the game made it more exciting.
* Unpredictable moments were good and tense.

* When something random happened, I lost interest.

Clarity is measured by C10, C11, and C12 (reverse) to check the expectation that
transparent, understandable randomness—similar to dice/cards paradigms or visible

risk envelopes—reduces confusion and perceived unfairness.

* [understood when and why random things happened.
* It was clear how luck could affect my next choice.
* [was confused about how luck worked in the game.

Satisfaction (C13—-C15) addresses whether outcomes align with skill and effort even
in the presence of luck.

* Results matched my effort and skill.
* [was mostly happy with the results of my choices.

e Even with luck, skill was rewarded.

Frustration (C16 and C17, both reverse-worded) examines the known risk that
output-style randomness increases annoyance and loss of control, and whether our

design minimizes such effects.

* Luck in the game annoyed me.

¢ [was rarely annoyed by luck.

Replayability (C18-C20, with C20 reverse-worded) evaluates the premise that input
randomness via shuffled modules and stat-based upgrades creates fresh runs without

sacrificing coherence.

e Because of luck, each run felt different.
* I would play again because new situations can happen.

* The variety felt forced or quickly the same.

For data quality, C23 serves as an attention check, and C24 mirrors the agency theme
to diagnose straightlining or inconsistency, as recommended for transparent validity

reporting.

o Attention: Please tick 5 for this line.

46

6 QUESTIONNAIRE FOR PLAYTESTING 6.2 Justification of the Questionnaire

* My success was mainly due to my decisions, not luck. (Duplicate of C4 and C6
(reverse))

The implementation checks complement these perceptions: D1 confirms the removal
of output randomness in combat, D2-D3 verify that upgrades are clear, fair, and
meaningfully influence play, D4-D5 test room coherence and freshness under
modular sequencing, D6 captures awareness of the pity system intended to reduce
streak frustration, D7 checks that players know when luck will matter, and D8
confirms the absence of monetized randomness, aligning with our ethical stance.
This mapping is documented in our item-to-finding overview and underpins the
instrument’s traceability from hypothesis to question and back.

¢ In combat, there were no random hit/miss outcomes.

* The upgrade choices made me change how I play.

* The upgrade choices were clear and fair.

* The order of rooms made sense and still felt fresh.

* No room felt out of place or unfair.

e If I got several weak rewards in a row, the next one seemed better. (Pity-System
Awareness)

* It was clear when luck would matter.

¢ I did not see any paid random rewards.

6.2 Justification of the Questionnaire

The questionnaire was purpose-built to measure the experience we care about and
to verify the prototype’s key design decisions, which we got with our literature
review. We choose to follow AAPOR principles for wording, ordering, burden,
randomization, and transparency, as it integrates questions to cross-check multiple
answers to see if the answers are consistent if the question varies a bit. Additionally
the various built-in check-points make sure that the responses are reliable and can

be used for further optimization of our game.

6.3 How do we evaluate the results?

Since our dicsussion and conclusion will follow soon, we would like to take a
moment and explain how we evaluated the results gathered from our playtesting.
Our evaluation plan follows a simple scoring approach. Reverse-worded items are

first flipped so that higher values consistently indicate more favorable perceptions,

47

7 RESULTS OF OUR PLAYTESTING

using x’ = 8 — x on the 7-point scale. For each topic, we compute the mean on the
native 1-7 scale and then apply a linear min-max normalization to a 0-100 index,

M -1
Indexg_100 = ean+ x 100,

such that 50 denotes a neutral position and values near 70 reflect clearly positive
responses; frustration is additionally reported inverted as 100—Frustration;ngex so that
all constructs share a uniform “higher is better” direction. To support methodological
rigor and clarity, we planned to report reliability (Cronbach’s) per construct, 95%
confidence intervals for group means, and known-groups comparisons (Noobs vs.
Pros), in line with AAPOR’s transparency guidance. Our success thresholds were
set to be decision-friendly yet realistic for early iterations: fairness, agency, clarity,
satisfaction, and replayability target > 70, because a score around 70 on the 0-100
index corresponds to a clearly positive average (roughly 5.2/7) rather than mere
neutrality; excitement and frustration_inverted target > 65, acknowledging that
taste, pacing, and subtle design trade-offs can make these constructs more variable;
deterministic combat (D1) targets > 90% “Yes” given its central role in avoiding
output randomness, and the absence of monetized randomness (D8) is set at 100%
“Yes” as an ethics/policy constraint; other implementation checks (D2, D3, D4, D5,
D7) aim for index means > 65 to demonstrate solid performance with room for polish
toward > 70. These choices align with AAPOR’s emphasis on clear scoring and
documented validity checks, and they create a balanced framework that supports

iteration without conflating index values with percentages of respondents.

7 Results of our Playtesting

The analysis included 12 participants. 7 participants play videogames rarely and
count to the category "Inexperienced" and 5 participants play videogames regu-
larly, already aware of some randomness-knowlege and consequently count to the
cateogory "Experienced". Reported run completions for the session were three

runs.

7.1 Questionnaire Results of Part C

Results were calculated and for each question the total mean for each group (Noob or

Pro) was taken. The mean of questions representing themes were then taken again

48

7 RESULTS OF OUR PLAYTESTING 7.2 Questionnaire Results of Part D

and presented in a Inexperienced vs. Experienced column diagramm, as indexed

results, as explained in previous chapter.

Construct Scores (0-100 Index) - Noobs vs Pros

100 |
90
80 4
70 A
60 -
50 A
40 A
30
20 4
10

Score (0-100 Index)

& + + * > & *
.&b@' \(\b@ ,&6"‘ _\(\b“ .‘01“& -\oba ‘\bbe
& ,b&?\’ &7 &7 5 Q\'S\’ é\o(‘/
¥ ¢ 5 = & « &
< ‘(&‘3‘ B

Construct

HNoob HPro

Figure 24: Inexperienced vs. Experienced Mean values

Here the exact numbers of the table:
Inexperienced vs. Experienced

e Agency: 73.4 vs. 87.5

¢ Clarity: 75.6 vs 88

e Excitement: 70 vs 73

¢ Fairness: 67.2 vs. 73.3

e Frustration inverted: 37 vs 30
* Replay: 72 vs 68

e Satisfaction: 67 vs 69

7.2 Questionnaire Results of Part D

Inexperienced vs. Experienced

¢ Random stat-based upgrade (R.S.B upgrades): 100 vs. 100
* Modular room sequencing for "handcrafted" content: 70 vs. 71
* Transparency: 80 vs 83

7.2.1 Results of Detirministic Combat and Pity-System

Inexperienced vs. Experienced

49

8 DISCUSSION AND INTERPRETATION

Implementation Checks
120

100

80
6
4
2
0

R.S.B.-Upgrades Modular Rooms Transparency

o

o

o

M Inexperienced M Experienced

Figure 25: Indexed Mean values

¢ Pity System: Yes: 43% vs. 66%, Not sure 43% vs. 23%, No: 14% vs. 11.2%
e Detirministic Combat: Yes: 82% vs. 90%, No: 18% vs. 10 %

Deterministic Combat Perception (Yes
Pity Awareness (D6) Distribution %)

120 92

100 - 90

80

60 -

Percent

Percent Yes
o0 o0

40 -

20 +

Inexperienced Experienced Inexperienced Experienced

mYes% MNotsure% mNo% . L i
(b) Detirministic Combat Perception (Yes Percent-
(a) Pity Awareness in Percentage Comparison age) Comparison

Figure 26: Implementation Checks

8 Discussion and Interpretation

This chapter examines the implications of the results for the PoC’s success. The
analysis begins with the core questionnaire section (C) before examining specific
implementation outcomes (D). For clarity, the "Inexperienced" group will be referred
to as "InX" and the "Experienced" group as "X" throughout this discussion.

50

8 DISCUSSION AND INTERPRETATION 8.1 Core Questionnaire

8.1 Core Questionnaire

8.1.1 Fairness and Frustration

Fairness

In many roguelike games, fairness represents a significant design challenge. Previ-
ous research on games such as XCOM demonstrates that output randomness can
undermine perceived fairness. Consequently, questions C1-C3 assessed whether
the prototype successfully avoided unwanted output randomness and effectively
implemented input randomness. The results yielded a fairness index of 67.2 from
group "InX" and 72.3 from group "X". With the success threshold established at an

index of 70, the "InX" group’s response indicates room for improvement.

The below-threshold fairness rating from group "InX" may be attributed to the
inherent variability of input randomness—despite occurring before player decisions,
the randomized elements can still produce more or less favorable scenarios. The
fully random algorithm may have generated challenging room sequences for certain
playtesters. Additionally, in some rounds the pity system appears not to have
activated as often as needed, likely due to the short runs and higher death frequency,
which proved insufficient for algorithm activation. The pity system only triggers after
frequent low-rarity upgrade distributions, subsequently increasing the probability
of higher-tier upgrades, therefore, if the rounds are short the player never received
sufficient "low-tier" loot to stimulate the algorhythm enough and ,thereby, to increase
their chance of receiving better loot. Furthermore, the pity system’s memory does
not persist across runs; the counter resets each playthrough, which may contribute

to perceptions of unfairness and frustration.

Conversely, group "X" responded more favorably to fairness measures. This dis-
crepancy raises the question of whether differential outcomes resulted from chance
variation. The more likely explanation is that experienced players possessed greater
familiarity with randomness mechanics in game design, enabling them to evaluate
fairness from a more informed, conceptual perspective rather than solely from

immediate gameplay outcomes.

However, the data indicate that for a broader audience, the current implementation

of fairness mechanisms may not meet acceptable standards.

Frustration
The questionnaire results indicate that frustration levels for group "InX" exceeded
acceptable thresholds. This outcome may correlate with the fairness ratings and

51

8 DISCUSSION AND INTERPRETATION 8.1 Core Questionnaire

share similar underlying causes. Questions C16 and C17 suggest that frustration
resulted from a combination of challenging input randomness and insufficient pity
system activation in scenarios where mitigation would have been beneficial. The

pity system’s limitations are detailed in the preceding section.

Technical issues also contributed to lower fairness ratings and higher frustration in-
dices. One bug caused enemies to become trapped within floor geometry, preventing
players from eliminating them and progressing to subsequent rooms, as complete
enemy elimination was required for advancement. To address this unexpected issue,
a temporary override button was implemented to eliminate all enemies simultane-
ously. While this solution undermines the intended challenge, it remains exclusively

in the PoC prototype and will be removed following comprehensive bug fixes.

Overall, the data indicates that the PoC’s difficulty level may have been excessive
for inexperienced players (group "InX"), a factor that requires consideration in

subsequent development iterations.

8.1.2 Replayability

Replayability represents another metric that fell below the established threshold.
Contrary to the fairness results, group "X" recorded a mean index below 70, while
group "InX" exceeded this threshold. Participant feedback from group "X" indicated
that the map generation did not achieve the anticipated level of run-to-run uniqueness,
suggesting the need for further investigation. This outcome likely resulted from
limited enemy variety and an insufficient number of distinct rooms (64 total). These
limitations were sufficiently subtle that they were primarily detected by the more

experienced player group ("X").

One notable anomaly emerged within this criterion: a playtester who completed
twelve runs reported that room uniqueness diminished during the final three
runs. This phenomenon likely stems from the constraints of modular procedural
generation combined with the limited room pool. After approximately nine runs, the
generated room sequences, while technically unique in arrangement, began to exhibit
perceptible patterns and repetition. Despite this limitation, the overall performance
regarding run-to-run uniqueness remained largely successful.

52

8 DISCUSSION AND INTERPRETATION 8.1 Core Questionnaire

8.1.3 Agency

Conversely, the PoC demonstrated strong performance in player agency metrics.
Agency, in game design terminology, refers to the relationship between player
decision-making and control relative to chance-based outcomes. This construct was

measured through questions C4-C6 and C24.

The favorable results in this criterion likely stem from successful implementation
of the core design principle: input randomness preserves agency while output
randomness undermines it. Consequently, the prototype achieved a randomness-
based gameplay experience wherein players perceived their success as primarily
attributable to strategic choices rather than luck—a perception that extended to

failure states as well.

Furthermore, question C5 ("I could plan ahead because surprises came before my
choices") validates the theoretical framework regarding the information horizon and
input randomness. When the information horizon is effectively implemented—for
instance, through modular procedural map generation—it introduces challenge while
minimizing frustration, thereby enabling players to engage in forward planning
despite the presence of randomized elements.

8.1.4 Excitement

The excitement metric demonstrated that input randomness successfully generated
positive tension and drama when properly balanced with decision timing. Although
the prototype met the established threshold for this criterion, two responses from
group "InX" assigned a rating of 5 to the reverse-phrased question C9, which assessed
whether random events diminished player interest. These outlier ratings (5 out of 7)
likely indicate that these participants encountered poorly timed randomness events
multiple times during their playthroughs, leading to accumulated irritation when
subsequent input-randomness-based events occurred. This repetition may have

fostered negative associations with randomness mechanics.

While the literature suggests that input randomness does not inherently generate
frustration, these specific cases represent exceptions to this general principle, demon-
strating that implementation timing and frequency remain critical factors in player
reception.

53

8 DISCUSSION AND INTERPRETATION 8.2 Implementation-Specific Checks

8.2 Implementation-Specific Checks

Analysis of the Implementation-Specific Checks (Part D of the questionnaire) reveals
notable findings regarding the pity system. Data from both groups "InX" and "X"
indicate that the pity system activated for the majority of participants, with only a
minority unable to observe its effects. Participants who selected "Not sure" frequently
provided comments indicating uncertainty while noting perceived improvements
in loot quality from enemies and random stat-based upgrades following periods of
weak rewards. These observations align with the intended pity system functionality;
therefore, accounting for the likelihood that a substantial portion of "Not sure"
responses would align with "Yes" if certainty were higher, the data suggest successful

pity system implementation in the PoC.

The pity system in the current PoC implementation did not affect enemy difficulty
scaling. Had such scaling been implemented, frustration levels would likely have

decreased while fairness perceptions increased.

Questions D2 and D3 collectively yielded an index of 100, confirming highly successful
implementation of random stat-based upgrades. This mechanic also contributed
positively to the overall fairness index, suggesting that fairness ratings would have
been lower without it. As a source of input randomness, this result supports the
theoretical framework that input randomness is perceived favorably because it

preserves player agency—at least in the context of random stat-based upgrades.

Question D7 ("It was clear when luck would matter") received indices exceeding
70 in both test groups, indicating successful implementation. This suggests that
transparency was achieved without compromising excitement (consistent with
previously discussed results). However, the data remain insufficient to confirm that
randomness transparency reduces perceived unfairness. The wording of D7 was too
objective to support such an inference: it assesses whether players could identify
when luck would influence outcomes, not whether this transparency enhanced
perceived fairness. Additionally, transparency in the PoC primarily applied to loot
and upgrades, which may have constrained the index—an anticipated trade-off, as
excessive transparency can diminish the surprise elements that contribute to player
enjoyment. The findings suggest that transparency alone may not substantially
reduce perceived unfairness unless combined with addressing the underlying issues

identified in the fairness and frustration analysis.

Questions D4 and D5 achieved marginally passing results, with a notable decline in
D5 ("No room felt out of place or unfair"). In rare instances affecting two participants,

54

9 CONCLUSION

the map generation produced predominantly linear configurations, reducing the
utility of vertical navigation mechanics. Follow-up inquiry clarified that these
participants did not perceive rooms as contextually inappropriate, but rather that

the spatial arrangement diminished the functional value of verticality.

These responses correlated with lower fairness ratings, and the affected participants

also reported slightly reduced excitement levels compared to other respondents.

9 Conclusion

9.1 Summary of the results

The Proof of Concept achieved mixed results across key design metrics. While it
successfully validated input randomness as a viable approach for preserving player
agency and generating excitement, significant challenges emerged in fairness and
frustration management, particularly for inexperienced players who fell below the 70-
point threshold with a fairness index of 67.2. The primary issues included insufficient
pity system activation due to short runs and its failure to persist across playthroughs,
excessive difficulty for novice players, and technical bugs that hindered progression.
Replayability suffered among experienced players due to limited enemy variety and
only 64 total rooms, causing perceptible repetition after approximately nine runs.
Conversely, the prototype excelled in player agency metrics across both groups,
with players attributing outcomes to strategic choices rather than luck, and random
stat-based upgrades achieved a perfect implementation score of 100. Transparency
and excitement metrics met established thresholds, though isolated cases revealed
that poorly timed random events can create negative associations. Overall, while
the core design principle proved sound, improvements are needed in pity system
mechanics, difficulty balancing, and content variety to meet standards for a broader

audience.

9.2 Positives

Throughout the development of our Proof of Concept, we acquired a broad range
of new skills and techniques, particularly in the areas of 3D modeling and asset
management. Working extensively with Blender allowed us to gain valuable hands-
on experience in creating, structuring, and optimizing assets for game engines.

One of the major advantages we encountered was Blender’s popularity and strong

55

9 CONCLUSION 9.3 Negatives

community ecosystem — the abundance of tutorials, forums, and ready-made tools
accelerated our learning process significantly and helped us overcome many early
technical hurdles. Additionally, we gained a solid understanding of the workflow
between Blender and Unity, which is highly relevant for modern game development
and will serve as a crucial foundation for future projects. This combination of
creative, technical, and problem-solving progress made the project both educational
and rewarding.

Looking further into the programming part, we also learned how to solve or avoid
certain common problems in Unity and found some new or improved methods of
implementing features. A specific example of this is that we learned to use Unity’s

navmesh pathfinding system, allowing us to implement it faster in future projects.

9.3 Negatives

However, the project also presented several challenges and limitations that tested
our adaptability. A major issue arose from our early assumption that all Blender
features—such as simulation nodes for random effects—would export directly to
Unity, which proved incorrect and required the creation of various workarounds.
Since none of the team members had prior experience with Blender, the initial
learning curve was steep and time-consuming, especially when dealing with complex
modeling and export workflows. Exporting models and materials into Unity turned
out to be particularly exhausting, as textures, shaders, and lighting often behaved
inconsistently between the two programs. Another major challenge came from
improper prefab setup during early stages: since many prefabs were built before
proper models existed, implementing later updates required significant rework.
Furthermore, animation proved to be one of the most difficult aspects of the process,
demanding careful planning, iterative practice, and fine-tuning to achieve acceptable
results. Finally, a considerable amount of trial and error was unavoidable due
to unexpected behavior during export and setup, which often slowed progress
and tested our patience but also provided valuable lessons for future development

cycles.

While we know how to solve the problems we encountered in this project, saving us
from having to solve them again, we still had to solve them for the first time during
this project. While this is of course always the case, the problem in our case was that

none of us have ever really worked on a larger, and especially, 3-dimensional game.

56

9 CONCLUSION 9.4 Outlook for the Future

Another problem we encountered is the fact that we made a game in which almost
all features depend heavily on one another and the game is not really playable, as we
intend it to, until it is almost complete. Because of this we had a lot less time to test
the project than we would have liked to, and it was really stressful to fix the great
amount of bugs that were only discovered once we were able to properly test the
game. This did also not only apply to programming but also to the entire project,
more specifically that we did not plan the programming and modeling together. This
means that, while the timeline of both the modeling and the programming would
have worked just fine one their own, the fact the we first had to learn modeling from
scratch created a bottleneck for the programming. Meaning that we were able to
complete the 3D models just like planned, we only had the first finished models
toward the later half of the project. Hence, the plan for the programming that would
have worked fine if we already had the models, fell apart, because, as we realized
later on, in order to playtest the game we needed the rooms to be completed which,
in turn, required the 3D models to be finished.

9.4 Outlook for the Future

First and foremost, our primary focus for future development will be bug fixing.
Although the Proof of Concept (PoC) successfully demonstrated our core idea of
randomness, several technical inconsistencies and gameplay issues remain that must

be resolved before the game can reach a stable and fully playable state.

Following the initial playtesting phase and based on the valuable feedback we
received from the participants, we plan to implement the suggested improvements
to enhance gameplay balance, clarity, and engagement. Furthermore, conducting a
second round of playtesting will be beneficial. While our first test aimed to compare
“inexperienced” and “experienced” player experiences, we noticed that we only
vaguely defined what the criteria of "InX" and "X" was, therefore, not distinguishing
them perfectly, as we made them choose to which group they belonged to, depending
on what games they have played prior. Furthermore, to really distinguish between "X"
and "InX", we must come with a better method, that would test the playtester’s skill
particularly in randomness. A new test group with more diverse gaming backgrounds
might also provide a clearer insight into the learning curve and accessibility of our

mechanics.

We also aim to polish our in-game assets and environments, which were intentionally

simplified for this PoC. Since our main goal was to explore the concept of randomness,

57

9 CONCLUSION 9.4 Outlook for the Future

visuals was secondary. However, moving toward a more complete game requires us to
go beyond this conceptual limitation and build a more immersive, visually coherent
world. To achieve this, we plan to research better workflows for handling non-
exportable Blender features or replicate their effects directly within Unity, ensuring
that our asset pipeline becomes more stable and predictable. Additionally, we intend
to plan asset creation and prefab setup more carefully in upcoming iterations to

minimize unnecessary rework and streamline the implementation of new content.

A key aspect of this visual improvement phase will be increasing our familiarity with
Blender-Unity integration, which will help us better manage transitions between
modeling, animation, and engine implementation. We also plan to experiment
with advanced Blender tools and Unity shaders to achieve a more polished and
dynamic look while maintaining efficiency. These enhancements would contribute
significantly to both visual appeal and performance optimization. Moreover, we aim
to add more animations — not only to characters but also to environmental elements

— to make the overall experience more dynamic and visually engaging.

In addition, expanding the variety of rooms, enemies, and builds remains a key
step to improving replayability and freshness between playthroughs. The long-term
goal is to achieve full procedural generation, allowing every run to feel unique.
Eventually, we would like to explore Al-driven procedural generation, further
enhancing unpredictability and dynamic content creation — though we acknowledge
that this approach introduces high complexity and potential for bugs, especially

given our current level of development experience.

Finally, we intend to incorporate a storyline into the game, shifting away from the
current endless high-score mode. A narrative layer could help offset the potential
frustration caused by unpredictable randomness by providing emotional context

and motivation for the player.

9.4.1 Why a Greek Theme?

The Greek mythological theme aligns with the core design philosophy centered on
randomness, fate, and challenge. Ancient Greek mythology explores the tension
between human agency and divine randomness, embodied in the concept of fate
(Moira), where even heroes and gods remain subject to unpredictable forces. This
thematic framework parallels the gameplay mechanics, wherein players navigate
procedurally generated rooms, encounter unpredictable stat-based upgrades, and

respond to random environmental effects such as variable gravity.

58

9 CONCLUSION 9.4 Outlook for the Future

The concept of Khaos (Chaos)—the primordial void from which all creation emerged
in Greek cosmology—provides a thematic foundation for the randomness systems.
Khaos represents the ultimate state of unpredictability and formlessness, the raw
potential from which order continuously emerges and transforms. This directly
corresponds to the procedural generation approach: each playthrough emerges
from a state of possibility, with rooms, upgrades, and challenges materializing
through randomized selection. The shifting gravity mechanics can be interpreted as
representing a world still influenced by primordial instability, not yet fully stabilized

into fixed natural laws.

Furthermore, the mythological setting provides a narrative framework for abstract
concepts such as chaos, order, and transformation, all of which relate directly to the
randomness systems. The chaotic influence attributed to deities such as Zeus or
Poseidon extends the presence of Khaos, while modular procedural rooms evoke the
labyrinthine spaces of Greek myth (e.g., Daedalus’ labyrinth)—environments that
resist fixed form and predictable structure.

From a design perspective, the Greek aesthetic offers both artistic cohesion and
implementation flexibility. The setting supports visually distinctive environments
(temples, underworlds, floating islands) that adapt readily to modular and procedural
generation. Italso provides symbolic depth to gameplay elements: random stat-based
upgrades can be represented as divine blessings or curses, while each playthrough
functions as a mythic trial of endurance and adaptability—a struggle to impose order

upon Khaos itself.

59

References References

References

[1]

2]

[3]

[4]

[6]

[7]

[9]

[10]

Armello Wiki contributors: Armello Wiki. https://armello. fandom.com/
wiki/Armello_Wiki, last accessed on: 04.10.2025.

DeFusco, Daniel: The Science of Surprise: Using Probability to
Create Engaging Video Games. https://www.yu.edu/news/katz/
science-surprise-using-probability-create-engaging-video-games,
last accessed on: 05.11.2025.

Deterding, Sebastian u.a.: Mastering Uncertainty: A Predictive
Processing Account of Enjoying Uncertain Success in Video Game
Play. https://www.frontiersin.org/journals/psychology/articles/10.
3389/fpsyg.2022.924953/pdf, last accessed on: 20.05.2025.

Fort, Thomas: Controlling Randomness: Using Procedural Generation to Influ-
ence Player Uncertainty in Video Games. https://stars.library.ucf.edu/
cgi/viewcontent.cgi?article=2706&context=honorstheses1990-2015,
last accessed on: 03.04.2025.

Game Maker’s Toolkit: The Two Types of Random in Game Design. https:
//www .youtube.com/watch?v=dwI5b-wRLic, last accessed on: 24.03.2025.

Guseva, Maria u.a.: Instruction Effects on Randomness in Sequence Gener-
ation. https://www.frontiersin.org/journals/psychology/articles/10.
3389/fpsyg.2023.1113654/pdf, last accessed on: 28.02.2024.

Into the Breach Wiki contributors: Into the Breach Wiki. https://
intothebreach. fandom. com/wiki/Into_The_Breach_Wiki, last accessed on:
05.10.2025.

Ludology Podcast: GameTek Classic 183 — Input Output Randomness. https://
ludology.libsyn.com/gametek-classic-183-input-output-randomness,
last accessed on: 10.04.2025.

Molkara, Farzam: Neuropsychology of Using Randomness in Game Design,
Playtesting (and Beyond)! https://tinyurl.com/yj48896d, last accessed on:
31.05.2025.

Nielsen, Rune Kristian Lundedal; Grabarczyk, Pawetl: Are Loot Boxes Gambling?
https://todigra.org/index.php/todigra/article/view/1774/1774, last
accessed on: 01.05.2025.

60

https://armello.fandom.com/wiki/Armello_Wiki
https://armello.fandom.com/wiki/Armello_Wiki
https://www.yu.edu/news/katz/science-surprise-using-probability-create-engaging-video-games
https://www.yu.edu/news/katz/science-surprise-using-probability-create-engaging-video-games
https://www.frontiersin.org/journals/psychology/articles/10.3389/fpsyg.2022.924953/pdf
https://www.frontiersin.org/journals/psychology/articles/10.3389/fpsyg.2022.924953/pdf
https://stars.library.ucf.edu/cgi/viewcontent.cgi?article=2706&context=honorstheses1990-2015
https://stars.library.ucf.edu/cgi/viewcontent.cgi?article=2706&context=honorstheses1990-2015
https://www.youtube.com/watch?v=dwI5b-wRLic
https://www.youtube.com/watch?v=dwI5b-wRLic
https://www.frontiersin.org/journals/psychology/articles/10.3389/fpsyg.2023.1113654/pdf
https://www.frontiersin.org/journals/psychology/articles/10.3389/fpsyg.2023.1113654/pdf
https://intothebreach.fandom.com/wiki/Into_The_Breach_Wiki
https://intothebreach.fandom.com/wiki/Into_The_Breach_Wiki
https://ludology.libsyn.com/gametek-classic-183-input-output-randomness
https://ludology.libsyn.com/gametek-classic-183-input-output-randomness
https://tinyurl.com/yj48896d
https://todigra.org/index.php/todigra/article/view/1774/1774

References References

[11] Staff, Game Developer: Roll for Your Life: Making Randomness
Transparent in Tharsis. https://www.gamedeveloper.com/design/
roll-for-your-1life-making-randomness-transparent-in-i-tharsis-i-,
last accessed on: 31.03.2025.

[12] Wikipedia contributors: Into the Breach — Wikipedia. https://en.wikipedia.
org/wiki/Into_the_Breach, last accessed on: 03.09.2025.

[13] Wikipedia contributors: Spelunky — Wikipedia. https://en.wikipedia.org/
wiki/Spelunky, last accessed on: 02.10.2025.

[14] Wikipedia contributors: XCOM — Wikipedia. https://en.wikipedia.org/
wiki/XCOM, last accessed on: 03.08.2025.

[15] XCOM Wiki contributors: XCOM Wiki. https://xcom. fandom.com/wiki/
XCOM_Wwiki, last accessed on: 03.08.2025.

[16] Zhang, Yilei u. a.: Effect of Input-Output Randomness on Gameplay Satisfaction
in Collectable Card Games. https://arxiv.org/pdf/2107.08437,last accessed
on: 02.04.2025.

[17] Wikipedia contributors: Slay the Spire — Wikipedia. https://en.wikipedia.
org/wiki/Slay_the_Spire, last accessed on: 05.11.2025.

[18] Wikipedia contributors: Hades (video game) — Wikipedia. https://en.
wikipedia.org/wiki/Hades_(video_game), last accessed on: 05.11.2025.

[19] Wikipedia contributors: Dead Cells — Wikipedia. https://en.wikipedia.
org/wiki/Dead_Cells, last accessed on: 05.11.2025.

[20] Wikipedia contributors: Minecraft — Wikipedia. https://en.wikipedia.org/
wiki/Minecraft, last accessed on: 05.11.2025.

[21] Wikipedia contributors: The Binding of Isaac — Wikipedia. https://en.
wikipedia.org/wiki/The_Binding_of_Isaac, last accessed on: 05.11.2025.

[22] Wikipedia contributors: Borderlands (video game) — Wikipedia. https:
//en.wikipedia.org/wiki/Borderlands_(video_game), last accessed on:
05.11.2025.

[23] Wikipedia contributors: Mario Kart — Wikipedia. https://en.wikipedia.
org/wiki/Mario_Kart, last accessed on: 05.11.2025.

61

https://www.gamedeveloper.com/design/roll-for-your-life-making-randomness-transparent-in-i-tharsis-i-
https://www.gamedeveloper.com/design/roll-for-your-life-making-randomness-transparent-in-i-tharsis-i-
https://en.wikipedia.org/wiki/Into_the_Breach
https://en.wikipedia.org/wiki/Into_the_Breach
https://en.wikipedia.org/wiki/Spelunky
https://en.wikipedia.org/wiki/Spelunky
https://en.wikipedia.org/wiki/XCOM
https://en.wikipedia.org/wiki/XCOM
https://xcom.fandom.com/wiki/XCOM_Wiki
https://xcom.fandom.com/wiki/XCOM_Wiki
https://arxiv.org/pdf/2107.08437
https://en.wikipedia.org/wiki/Slay_the_Spire
https://en.wikipedia.org/wiki/Slay_the_Spire
https://en.wikipedia.org/wiki/Hades_(video_game)
https://en.wikipedia.org/wiki/Hades_(video_game)
https://en.wikipedia.org/wiki/Dead_Cells
https://en.wikipedia.org/wiki/Dead_Cells
https://en.wikipedia.org/wiki/Minecraft
https://en.wikipedia.org/wiki/Minecraft
https://en.wikipedia.org/wiki/The_Binding_of_Isaac
https://en.wikipedia.org/wiki/The_Binding_of_Isaac
https://en.wikipedia.org/wiki/Borderlands_(video_game)
https://en.wikipedia.org/wiki/Borderlands_(video_game)
https://en.wikipedia.org/wiki/Mario_Kart
https://en.wikipedia.org/wiki/Mario_Kart

References References

[24] Wikipedia contributors: Middle-earth: Shadow of Mordor — Wikipedia. https:
//en.wikipedia.org/wiki/Middle-earth:_Shadow_of_Mordor, last accessed
on: 05.11.2025.

[25] Z-Man Games: Pandemic — Official Product/Rules. https://zmangames.com/
en/products/pandemic/, last accessed on: 05.11.2025.

[26] TetrisWiki contributors: Random Generator (7-bag). https://tetris.wiki/
Random_Generator, last accessed on: 05.11.2025.

[27] Hearthstone Wiki contributors: Pity timer.https://hearthstone. fandom. com/
wiki/Pity_timer, last accessed on: 05.11.2025.

[28] Wikipedia contributors: Apex Legends — Wikipedia. https://en.wikipedia.
org/wiki/Apex_Legends, last accessed on: 05.11.2025.

[29] Wikipedia contributors: Overwatch — Wikipedia. https://en.wikipedia.
org/wiki/Overwatch, last accessed on: 05.11.2025.

[30] Wikipedia contributors: FIFA Ultimate Team — Wikipedia. https://en.
wikipedia.org/wiki/FIFA_Ultimate_Team, last accessed on: 05.11.2025.

[31] Wikipedia contributors: Counter-Strike: Global Offensive — Wikipedia. https:
//en.wikipedia.org/wiki/Counter-Strike:_Global_Offensive, last ac-
cessed on: 05.11.2025.

[32] Serenes Forest: True Hit (2 RN) in Fire Emblem. https://serenesforest.net/
general/true-hit/, last accessed on: 05.11.2025.

[33] Blizzard Entertainment: Patch 2.0.1 — Loot 2.0 and Smart Loot. https://us.
diablo3.blizzard.com/en-us/blog/13141558/patch-201-2014-2-25, last
accessed on: 05.11.2025.

[34] Blender Guru: Beginner Blender Tutorial (Donut Part 1). 16.11.2023. https:
//www.youtube.com/watch?v=B0J27sfIN1Y, last accessed on: 06.11.2025.

[35] Jelle Vermandere: How To Make A 3D Character For Your Game (Blender
to Unity). 02.08.2020. https://www.youtube.com/watch?v=o09z-3rOEHKY, last
accessed on: 06.11.2025.

[36] Blender Guru: Beginner Blender 4.0 Tutorial — Part 5: Shading.20.11.2023. https:
//www .youtube.com/watch?v=fsLO1F5x7yM, last accessed on: 06.11.2025.

62

https://en.wikipedia.org/wiki/Middle-earth:_Shadow_of_Mordor
https://en.wikipedia.org/wiki/Middle-earth:_Shadow_of_Mordor
https://zmangames.com/en/products/pandemic/
https://zmangames.com/en/products/pandemic/
https://tetris.wiki/Random_Generator
https://tetris.wiki/Random_Generator
https://hearthstone.fandom.com/wiki/Pity_timer
https://hearthstone.fandom.com/wiki/Pity_timer
https://en.wikipedia.org/wiki/Apex_Legends
https://en.wikipedia.org/wiki/Apex_Legends
https://en.wikipedia.org/wiki/Overwatch
https://en.wikipedia.org/wiki/Overwatch
https://en.wikipedia.org/wiki/FIFA_Ultimate_Team
https://en.wikipedia.org/wiki/FIFA_Ultimate_Team
https://en.wikipedia.org/wiki/Counter-Strike:_Global_Offensive
https://en.wikipedia.org/wiki/Counter-Strike:_Global_Offensive
https://serenesforest.net/general/true-hit/
https://serenesforest.net/general/true-hit/
https://us.diablo3.blizzard.com/en-us/blog/13141558/patch-201-2014-2-25
https://us.diablo3.blizzard.com/en-us/blog/13141558/patch-201-2014-2-25
https://www.youtube.com/watch?v=B0J27sf9N1Y
https://www.youtube.com/watch?v=B0J27sf9N1Y
https://www.youtube.com/watch?v=ogz-3r0EHKM
https://www.youtube.com/watch?v=fsLO1F5x7yM
https://www.youtube.com/watch?v=fsLO1F5x7yM

List of Figures List of Figures

List of Figures
1 ShowingGthenZGrab 22
2 SideView. e e 22
3 Sphereofinfluence L. 23
4 Linkselect e 23
5 Showing Extrude 0 .. 24
6 Showingloopcuts. Lo o L. 24
7 ShowingBevel 00 L. 25
8 ShowingKnife L L L o 25
9 Hideand Unhide 26
10 Inexperienced vs. Experienced Meanvalues. 26
11 Showing the armatureasparent. 27
12 Keyframe animation withrigFig 27
13 Slopewith45° 29
14 Slopewith25° 29
15 Stairswith45° e 30
16 Greek Pavilion createdon Blender 31
17 Vase structure exampleon Blender 32
18 Sketchof Minotaur 33
19 MinotaurinBlender 34
20 Character/Figureexample 35
21 UVEditingScreen. 36
22 ExportWindow L oo 36
23 Picture in Unity ShowcasingaRoom 37
24 Inexperienced vs. Experienced Meanvalues. 49
25 Indexed Meanvalues 50
26 ImplementationChecks 50

63

	Introduction
	Literature Review
	Randomness in Videogames
	Terminology
	What are roguelikes?
	Procedural Generation in Rogueikes

	Purpose of Randomness in Games
	Types of Randomness: Input vs. Output
	Strategic Impact and the Information Horizon
	Psychological and Behavioral Effects
	Ethical and Design Considerations: Loot Boxes
	Random Stat-Based Upgrades

	Hypothesis Formulated from Literature Review
	Quick Summary

	The Game
	Core gameplay loop
	Core Mechanics
	Player Abilities
	Progression and Upgrades

	Procedural Level Generation in Three Dimensions
	Enemy types and their behaviors
	Interactions, Balance and Pacing

	Implementation
	Project Organisation
	Literature Review
	Pre-Input for Modelling: Blender
	Viewport Navigation and Transforms
	Edit Mode and Selection Fundamentals
	Fast Modeling Toolkit
	Productive Use of Modifiers
	Materials and Viewport Display
	Rigging Primer: Armatures and Weight Painting
	Keyframe Animation, With or Without Rigs

	Modeling with Blender
	Ramps at 45°, 35°, and 25°
	Stairs at 45°
	Pavilion-Like Platform
	Vase-Like Structures
	Characters
	Texturing
	Export to Unity
	Rooms Implementation

	Programming
	Random Generation
	Changing gravity
	Upgrades
	Enemies
	Pity-system

	Questionnaire for Playtesting
	Method and approach
	Justification of the Questionnaire
	How do we evaluate the results?

	Results of our Playtesting
	Questionnaire Results of Part C
	Questionnaire Results of Part D
	Results of Detirministic Combat and Pity-System

	Discussion and Interpretation
	Core Questionnaire
	Fairness and Frustration
	Replayability
	Agency
	Excitement

	Implementation-Specific Checks

	Conclusion
	Summary of the results
	Positives
	Negatives
	Outlook for the Future
	Why a Greek Theme?

